Topologically Protected Transport in Engineered Mechanical Systems

Abstract

Mechanical vibrations are being harnessed for a variety of purposes and at many length scales, from the macroscopic world down to the nanoscale. The considerable design freedom in mechanical structures allows to engineer new functionalities. In recent years, this has been exploited to generate setups that offer topologically protected transport of vibrational waves, both in the solid state and in fluids. Borrowing concepts from electronic physics and being cross-fertilized by concurrent studies for cold atoms and electromagnetic waves, this field of topological transport in engineered mechanical systems offers a rich variety of phenomena and platforms. In this review, we provide a unifying overview of the various ideas employed in this area, summarize the different approaches and experimental implementations, and comment on the challenges as well as the prospects

    Similar works