1,175 research outputs found

    APFELgrid: A high performance tool for parton density determinations

    Get PDF
    We present a new software package designed to reduce the computational burden of hadron collider measurements in Parton Distribution Function (PDF) fits. The APFELgrid package converts interpolated weight tables provided by APPLgrid files into a more efficient format for PDF fitting by the combination with PDF and as evolution factors provided by APFEL. This combination significantly reduces the number of operations required to perform the calculation of hadronic observables in PDF fits and simplifies the structure of the calculation into a readily optimised scalar product. We demonstrate that our technique can lead to a substantial speed improvement when compared to existing methods without any reduction in numerical accuracy. Program Summary Program Title: APFELgrid Program Files doi: http://dx.doi.org/10.17632/mhwjt5nsg7.1 Licensing provisions: MIT license Programming language: C++ Nature of problem: Fast computation of hadronic observables under the variation of parton distribution functions. Solution method: Combination of interpolated weight grids from APPLgrid files and evolution factors from APFEL into efficient FastKernel tables. External routines/libraries: APPLgrid, APFE

    Kaon oscillations in the Standard Model and Beyond using Nf=2 dynamical quarks

    Get PDF
    We compute non-perturbatively the B-parameters of the complete basis of four-fermion operators needed to study the Kaon oscillations in the SM and in its supersymmetric extension. We perform numerical simulations with two dynamical maximally twisted sea quarks at three values of the lattice spacing on configurations generated by the ETMC. Unwanted operator mixings and O(a) discretization effects are removed by discretizing the valence quarks with a suitable Osterwalder-Seiler variant of the Twisted Mass action. Operators are renormalized non-perturbatively in the RI/MOM scheme. Our preliminary result for BK(RGI) is 0.73(3)(3).Comment: 7 pages, 3 figures, 1 table, proceedings of the XXVII Int'l Symposyum on Lattice Field Theory (LAT2009), July 26-31 2009, Peking University, Beijing (China

    PAMELA's cosmic positron from decaying LSP in SO(10) SUSY GUT

    Full text link
    We propose two viable scenarios explaining the recent observations on cosmic positron excess. In both scenarios, the present relic density in the Universe is assumed to be still supported by thermally produced WIMP or LSP (\chi). One of the scenarios is based on two dark matter (DM) components (\chi,X) scenario, and the other is on SO(10) SUSY GUT. In the two DM components scenario, extremely small amount of non-thermally produced meta-stable DM component [O(10^{-10}) < n_X /n_\chi] explains the cosmic positron excess. In the SO(10) model, extremely small R-parity violation for LSP decay to e^\pm is naturally achieved with a non-zero VEV of the superpartner of one right-handed neutrino (\tilde{\nu}^c) and a global symmetry.Comment: 6 pages, Talks presented in PASCOS, SUSY, and COSMO/CosPA in 201

    The partonic structure of the electron at the next-to-leading logarithmic accuracy in QED

    Full text link
    By working in QED, we obtain the electron, positron, and photon Parton Distribution Functions (PDFs) of the unpolarised electron at the next-to-leading logarithmic accuracy. The PDFs account for all of the universal effects of initial-state collinear origin, and are key ingredients in the calculations of cross sections in the so-called structure-function approach. We present both numerical and analytical results, and show that they agree extremely well with each other. The analytical predictions are defined by means of an additive formula that matches a large-zz solution that includes all orders in the QED coupling constant α\alpha, with a small- and intermediate-zz solution that includes terms up to O(α3){\cal O}(\alpha^3).Comment: 60 pages, 25 figures; the overall normalisation of eq.(5.56) and eq.(5.57), and a couple of grammatical mistakes, have been correcte

    The impact of heavy quark mass effects in the NNPDF global analysis

    Get PDF
    We discuss the implementation of the FONLL general-mass scheme for heavy quarks in deep-inelastic scattering in the FastKernel framework, used in the NNPDF series of global PDF analysis. We present the general features of FONLL and benchmark the accuracy of its implementation in FastKernel comparing with the Les Houches heavy quark benchmark tables. We then show preliminary results of the NNPDF2.1 analysis, in which heavy quark mass effects are included following the FONLL-A GM scheme.Comment: 5 pages, 3 figures; to appear in the proceedings of DIS 2010, Firenz

    Progress in the Neural Network Determination of Polarized Parton Distributions

    Full text link
    We review recent progress towards a determination of a set of polarized parton distributions from a global set of deep-inelastic scattering data based on the NNPDF methodology, in analogy with the unpolarized case. This method is designed to provide a faithful and statistically sound representation of parton distributions and their uncertainties. We show how the FastKernel method provides a fast and accurate method for solving the polarized DGLAP equations. We discuss the polarized PDF parametrizations and the physical constraints which can be imposed. Preliminary results suggest that the uncertainty on polarized PDFs, most notably the gluon, has been underestimated in previous studies.Comment: 5 pages, 2 figures; to appear in the proceedings of DIS 2010, Firenz

    Improving methods and predictions at high-energy e+e− colliders within collinear factorisation

    Full text link
    We illustrate how electron Parton Distribution Functions (PDFs) with next-to-leading collinear logarithmic accuracy must be employed in the context of perturbative predictions for high-energy e+e−-collision processes. In particular, we discuss how the renormalisation group equation evolution of such PDFs is affected by the presence of multiple fermion families and their respective mass thresholds, and by the dependences on the choices of the factorisation and renormalisation schemes. We study the impact of the uncertainties associated with the PDFs on physical cross sections, in order to arrive at realistic precision estimates for observables computed with collinear-factorisation formulae. We do so by presenting results for the production of a heavy neutral object as well as for tt¯ and W+W− pairs, including next-to-leading-order effects of electroweak origin

    Supermassive Black Holes and Galaxy Formation

    Get PDF
    The formation of supermassive black holes (SMBH) is intimately related to galaxy formation, although precisely how remains a mystery. I speculate that formation of, and feedback from, SMBH may alleviate problems that have arisen in our understanding of the cores of dark halos of galaxies.Comment: Talk at conference on Matter in the Universe, March 2001, ISSI Ber
    • …
    corecore