93 research outputs found

    JCV-specific T-cells producing IFN-gamma are differently associated with PmL occurrence in HIV patients and liver transplant recipients

    Get PDF
    Aim of this work was to investigate a possible correlation between the frequency of JCV-specific T-cells and PML occurrence in HIV-infected subjects and in liver transplant recipients. A significant decrease of JCV-specific T-cells was observed in HIV-PML subjects, highlighting a close relation between JCV-specific T-cell immune impairment and PML occurrence in HIV-subjects. Interestingly, liver-transplant recipients (LTR) showed a low frequency of JCV-specific T-cells, similar to HIV-PML subjects. Nevertheless, none of the enrolled LTR developed PML, suggesting the existence of different immunological mechanisms involved in the maintenance of a protective immune response in LT

    Relationship between p53 and p27 expression following HER2 signaling

    Get PDF
    HER2, frequently associated with low p27 expression in breast tumors, when activated has been found to upmodulate p53 in tumor cells. The aim of this work was to investigate the role of p53 in the connection between HER2 and p27. Fifty-two breast tumor specimens, characterized for p53 mutations, were analyzed immunohistochemically (IHC) for HER2, p53 and p27 expression. p27, inversely associated with HER2, was found in 29% of tumors with IHC-negative mutated p53 versus 93% of tumors with accumulation of p53 protein and 59% with wild-type p53 (p=0.001), indicating a direct association between p53 and p27 expression. HER2-overexpressing cell lines carrying wild-type or null p53 protein, and treated with heregulin beta1 (HRG), were analyzed for expression and subcellular localization of p53 and p27. In HER2-overexpressing cells stimulated with HRG, p27 protein expression increased in parallel with p53 with no corresponding increase in p27 transcript. No p27 increase was observed in p53-null cells. Transfection with wild-type p53 restored p27 upmodulation in HRG-stimulated cells, indicating a crucial role of p53 in determining p27 upmodulation following HER2 activation. Together, our data demonstrate the crucial role of p53 in determining p27 upmodulation following HER2 activation. This could have implications in the response to Transtuzumab therapy

    The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma

    Get PDF
    The vacuolar H+ ATPase (V-ATPase) is a proton pump responsible for acidification of cellular microenvironments, an activity exploited by tumors to survive, proliferate and resist to therapy. Despite few observations, the role of V-ATPase in human tumorigenesis remains unclear.We investigated the expression of ATP6V0C, ATP6V0A2, encoding two subunits belonging to the V-ATPase V0 sector and ATP6V1C, ATP6V1G1, ATPT6V1G2, ATP6V1G3, which are part of the V1 sector, in series of adult gliomas and in cancer stem cell-enriched neurospheres isolated from glioblastoma (GBM) patients. ATP6V1G1 expression resulted significantly upregulated in tissues of patients with GBM and correlated with shorter patients' overall survival independent of clinical variables.ATP6V1G1 knockdown in GBM neurospheres hampered sphere-forming ability, induced cell death, and decreased matrix invasion, a phenotype not observed in GBM monolayer cultures. Treating GBM organotypic cultures or neurospheres with the selective V-ATPase inhibitor bafilomycin A1 reproduced the effects of ATP6V1G1 siRNA and strongly suppressed expression of the stem cell markers Nestin, CD133 and transcription factors SALL2 and POU3F2 in neurospheres.These data point to ATP6V1G1 as a novel marker of poor prognosis in GBM patients and identify V-ATPase inhibition as an innovative therapeutic strategy for GBM

    The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma

    Get PDF
    The vacuolar H+ ATPase (V-ATPase) is a proton pump responsible for acidification of cellular microenvironments, an activity exploited by tumors to survive, proliferate and resist to therapy. Despite few observations, the role of V-ATPase in human tumorigenesis remains unclear.We investigated the expression of ATP6V0C, ATP6V0A2, encoding two subunits belonging to the V-ATPase V0 sector and ATP6V1C, ATP6V1G1, ATPT6V1G2, ATP6V1G3, which are part of the V1 sector, in series of adult gliomas and in cancer stem cell-enriched neurospheres isolated from glioblastoma (GBM) patients. ATP6V1G1 expression resulted significantly upregulated in tissues of patients with GBM and correlated with shorter patients' overall survival independent of clinical variables.ATP6V1G1 knockdown in GBM neurospheres hampered sphere-forming ability, induced cell death, and decreased matrix invasion, a phenotype not observed in GBM monolayer cultures. Treating GBM organotypic cultures or neurospheres with the selective V-ATPase inhibitor bafilomycin A1 reproduced the effects of ATP6V1G1 siRNA and strongly suppressed expression of the stem cell markers Nestin, CD133 and transcription factors SALL2 and POU3F2 in neurospheres.These data point to ATP6V1G1 as a novel marker of poor prognosis in GBM patients and identify V-ATPase inhibition as an innovative therapeutic strategy for GBM

    Extraribosomal functions associated with the C terminus of the 37/67 kDa laminin receptor are required for maintaining cell viability

    Get PDF
    The 37/67 kDa laminin receptor (LAMR) is a multifunctional protein, acting as an extracellular receptor, localizing to the nucleus, and playing roles in rRNA processing and ribosome assembly. LAMR is important for cell viability; however, it is unclear which of its functions are essential. We developed a silent mutant LAMR construct, resistant to siRNA, to rescue the phenotypic effects of knocking down endogenous LAMR, which include inhibition of protein synthesis, cell cycle arrest, and apoptosis. In addition, we generated a C-terminal-truncated silent mutant LAMR construct structurally homologous to the Archaeoglobus fulgidus S2 ribosomal protein and missing the C-terminal 75 residues of LAMR, which displays more sequence divergence. We found that HT1080 cells stably expressing either silent mutant LAMR construct still undergo arrest in the G1 phase of the cell cycle when treated with siRNA. However, the expression of full-length silent mutant LAMR rescues cell viability, whereas the expression of the C-terminal-truncated LAMR does not. Interestingly, we also found that both silent mutant constructs restore protein translation and localize to the nucleus. Our findings indicate that the ability of LAMR to regulate viability is associated with its C-terminal 75 residues. Furthermore, this function is distinct from its role in cell proliferation, independent of its ribosomal functions, and may be regulated by a nonnuclear localization

    Activation of Estrogen Receptor-α by E2 or EGF Induces Temporally Distinct Patterns of Large-Scale Chromatin Modification and mRNA Transcription

    Get PDF
    Estrogen receptor-α (ER) transcription function is regulated in a ligand-dependent (e.g., estradiol, E2) or ligand-independent (e.g., growth factors) manner. Our laboratory seeks to understand these two modes of action. Using a cell line that contains a visible prolactin enhancer/promoter array (PRL-HeLa) regulated by ER, we analyzed ER response to E2 and EGF by quantifying image-based results. Data show differential recruitment of GFP-ER to the array, with the AF1 domain playing a vital role in EGF-mediated responsiveness. Temporal analyses of large-scale chromatin dynamics, and accumulation of array-localized reporter mRNA over 24 hours showed that the EGF response consists of a single pulse of reporter mRNA accumulation concomitant with transient increase in array decondensation. Estradiol induced a novel cyclical pattern of mRNA accumulation with a sustained increase in array decondensation. Collectively, our work shows that there is a stimuli-specific pattern of large-scale chromatin modification and transcript levels by ER

    TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites

    Get PDF
    Understanding the modulation of the neural circuitry of fear is clearly one of the most important aims in neurobiology. Protein phosphorylation in response to external stimuli is considered a major mechanism underlying dynamic changes in neural circuitry. TrkB (Ntrk2) neurotrophin receptor tyrosine kinase potently modulates synaptic plasticity and activates signal transduction pathways mainly through two phosphorylation sites [Y515/Shc site; Y816/PLCgamma (phospholipase Cgamma) site]. To identify the molecular pathways required for fear learning and amygdalar synaptic plasticity downstream of TrkB, we used highly defined genetic mouse models carrying single point mutations at one of these two sites (Y515F or Y816F) to examine the physiological relevance of pathways activated through these sites for pavlovian fear conditioning (FC), as well as for synaptic plasticity as measured by field recordings obtained from neurons of different amygdala nuclei. We show that a Y816F point mutation impairs acquisition of FC, amygdalar synaptic plasticity, and CaMKII signaling at synapses. In contrast, a Y515F point mutation affects consolidation but not acquisition of FC to tone, and also alters AKT signaling. Thus, TrkB receptors modulate specific phases of fear learning and amygdalar synaptic plasticity through two main phosphorylation docking sites
    • …
    corecore