1,471 research outputs found

    A family of anisotropic integral operators and behaviour of its maximal eigenvalue

    Full text link
    We study the family of compact integral operators Kβ\mathbf K_\beta in L2(R)L^2(\mathbb R) with the kernel K_\beta(x, y) = \frac{1}{\pi}\frac{1}{1 + (x-y)^2 + \beta^2\Theta(x, y)}, depending on the parameter β>0\beta >0, where Θ(x,y)\Theta(x, y) is a symmetric non-negative homogeneous function of degree γ1\gamma\ge 1. The main result is the following asymptotic formula for the maximal eigenvalue MβM_\beta of Kβ\mathbf K_\beta: M_\beta = 1 - \lambda_1 \beta^{\frac{2}{\gamma+1}} + o(\beta^{\frac{2}{\gamma+1}}), \beta\to 0, where λ1\lambda_1 is the lowest eigenvalue of the operator A=d/dx+Θ(x,x)/2\mathbf A = |d/dx| + \Theta(x, x)/2. A central role in the proof is played by the fact that Kβ,β>0,\mathbf K_\beta, \beta>0, is positivity improving. The case Θ(x,y)=(x2+y2)2\Theta(x, y) = (x^2 + y^2)^2 has been studied earlier in the literature as a simplified model of high-temperature superconductivity.Comment: 16 page

    The quality of gosling meat depending on the level of lithium in mixed fodders

    Get PDF
    Micronutrients are an important component of a complete poultry feeding. Current detailed feeding standards provide guaranteed feed additives for farm poultry of the microelement complex. Among the normalized microelements there is no lithium, which according to the classification based on biological role for living organisms belongs to the group of conditionally essential elements. The purpose of the study was to investigate the effect of various doses of lithium in compound feed on the chemical composition and toxicological and biological parameters of caterpillar meat. The effect of additives of different doses of lithium (0.05 mg/kg, 0.10 and 0.15 mg/kg) in compound forages on the quality and safety of the products of slaughter of 70-day gosling was studied. The studies were conducted on gosling of the Legart breed. Feeding of gosling from day to 70 days of age was carried out by full-feed compound feeds. The birds of the experimental groups were additionally injected with lithium in the feed, mg/kg: the second group was 0.05; third – 0.10 and fourth – 0.15. The gosling of the control group did not receive lithium. Analysis of the results of the studies revealed differences between the control and experimental groups in the chemical composition of the muscular tissue of the gosling in favor of the latter. It was found that the introduction of lithium compound feed had a positive effect on the deposition of dry matter, protein and fat in the gosling of the experimental groups, which contributed to its increased energy and biological value. The best indicators of meat quality were in young animals, which during the growing period were fed compound feeds enriched with lithium at the rate of 0.1 and 0.15 mg/kg

    Sources of Radiation in the Early Universe: The Equation of Radiative Transfer and Optical Distances

    Full text link
    We have derived the radiative-transfer equation for a point source with a specified intensity and spectrum, originating in the early Universe between the epochs of annihilation and recombination, at redshifts z_\s =10^8\div 10^4. The direct radiation of the source is separated from the diffuse radiation it produces. Optical distances from the source for Thomson scattering and bremsstrahlung absorption at the maximum of the thermal background radiation are calculated as a function of the redshift z.The distances grow sharply with decreasing z, approaching asymptotic values, the absorption distance increasing more slowly and reaching their limiting values at lower z. For the adopted z values, the optical parameters of the Universe can be described in a flat model with dusty material and radiation, and radiative transfer can be treated in a grey approximation.Comment: 14 pages, 2 figure

    Molecular hydrogen in the cosmic recombination epoch

    Get PDF
    The advent of precise measurements of the cosmic microwave background (CMB) anisotropies has motivated correspondingly precise calculations of the cosmic recombination history. Cosmic recombination proceeds far out of equilibrium because of a "bottleneck" at the n=2n=2 level of hydrogen: atoms can only reach the ground state via slow processes: two-photon decay or Lyman-α\alpha resonance escape. However, even a small primordial abundance of molecules could have a large effect on the interline opacity in the recombination epoch and lead to an additional route for hydrogen recombination. Therefore, this paper computes the abundance of the H2_2 molecule during the cosmic recombination epoch. Hydrogen molecules in the ground electronic levels X1Σg+^1\Sigma^+_g can either form from the excited H2_2 electronic levels B1Σu+^1\Sigma^+_u and C1Πu^1\Pi_u or through the charged particles H2+_2^+, HeH+^+ and H^-. We follow the transitions among all of these species, resolving the rotational and vibrational sub-levels. Since the energies of the X1Σg+^1\Sigma^+_g--B1Σu+^1\Sigma^+_u (Lyman band) and X1Σg+^1\Sigma^+_g-C1Πu^1\Pi_u (Werner band) transitions are near the Lyman-α\alpha energy, the distortion of the CMB spectrum caused by escaped H Lyman-line photons accelerates both the formation and the destruction of H2_2 due to this channel relative to the thermal rates. This causes the populations of H2_2 molecules in X1Σg+^1\Sigma^+_g energy levels to deviate from their thermal equilibrium abundances. We find that the resulting H2_2 abundance is 101710^{-17} at z=1200z=1200 and 101310^{-13} at z=800z=800, which is too small to have any significant influence on the recombination history.Comment: 13 pages, 10 figures, to be submitted to PR

    Two-photon transitions in primordial hydrogen recombination

    Full text link
    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from CMB observations. While the central role of the two-photon decay 2s->1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns,nd->1s (n>=3). Simple attempts to include these processes in recombination calculations have suffered from physical problems associated with sequences of one-photon decays, e.g. 3d->2p->1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However we find that some photons between Ly-alpha and Ly-beta are produced, mainly by 3d->1s two-photon decay and 2s->1s Raman scattering. At later times these photons redshift down to Ly-alpha, excite hydrogen atoms, and act to slow recombination. Thus the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. The implied correction to the CMB power spectrum is neligible for the recently released WMAP and ACBAR data, but at Fisher matrix level will be 7 sigma for Planck. [ABRIDGED]Comment: Matches PRD accepted version. 28 pages, 12 figure

    How do methanol masers manage to appear in the youngest star vicinities and isolated molecular clumps?

    Full text link
    General characteristics of methanol (CH3OH) maser emission are summarized. It is shown that methanol maser sources are concentrated in the spiral arms. Most of the methanol maser sources from the Perseus arm are associated with embedded stellar clusters and a considerable portion is situated close to compact HII regions. Almost 1/3 of the Perseus Arm sources lie at the edges of optically identified HII regions which means that massive star formation in the Perseus Arm is to a great extent triggered by local phenomena. A multiline analysis of the methanol masers allows us to determine the physical parameters in the regions of maser formation. Maser modelling shows that class II methanol masers can be pumped by the radiation of the warm dust as well as by free-free emission of a hypercompact region hcHII with a turnover frequency exceeding 100 GHz. Methanol masers of both classes can reside in the vicinity of hcHIIs. Modelling shows that periodic changes of maser fluxes can be reproduced by variations of the dust temperature by a few percent which may be caused by variations in the brightness of the central young stellar object reflecting the character of the accretion process. Sensitive observations have shown that the masers with low flux densities can still have considerable amplification factors. The analysis of class I maser surveys allows us to identify four distinct regimes that differ by the series of their brightest lines.Comment: 8 pages, 4 figures, invited presentation at IAU242 "Astrophysical Masers and their environments

    Methanol in W3(H2O) and Surrounding Regions

    Full text link
    We present the results of an interferometric study of 38 millimeter-wave lines of CH3OH in the region around the water maser source W3(H2O) and a region extending about 30" to the south and west of the hydroxyl maser source W3(OH). The methanol emitting region around W3(H2O) has an extent of 2.0" x 1.2" (4400 x 2600 AU). The density is of order 1.e7 cm-3, sufficient to thermalize most of the methanol lines. The kinetic temperature is approximately 140 K and the methanol fractional abundance greater than 1.e-6, indicative of a high degree of grain mantle evaporation. The W3(H2O) source contains sub-structure, with peaks corresponding to the TW source and Wyrowski's B/C, separated by 2500 AU in projection. The kinematics are consistent with these being distinct protostellar cores in a wide binary orbit and a dynamical mass for the region of a few tens of Mo. The extended methanol emission to the southwest of W3(OH) is seen strongly only from the lowest excitation lines and from lines known elsewhere to be class I methanol masers, namely the 84.5 GHz 5(-1)-4(0)E and 95.2 GHz 8(0)-7(1)A+ lines. Within this region there are two compact clumps, which we denote as swA and swB, each about 15" (0.16 pc projected distance) away from W3(OH). Excitation analysis of these clumps indicates the presence of lines with inverted populations but only weak amplification. The sources swA and swB appear to have kinetic temperatures of order 50-100 K and densities of order 1.e5 - 1.e6 cm-3. The methanol fractional abundance for the warmer clump is of order 1.e-7, suggestive of partial grain mantle evaporation. The clumping occurs on mass scales of order 1 Mo.Comment: 28 pages including 6 figures and 4 tables, accepted by Ap
    corecore