111 research outputs found

    Damping in 2D and 3D dilute Bose gases

    Full text link
    Damping in 2D and 3D dilute gases is investigated using both the hydrodynamical approach and the Hartree-Fock-Bogoliubov (HFB) approximation . We found that the both methods are good for the Beliaev damping at zero temperature and Landau damping at very low temperature, however, at high temperature, the hydrodynamical approach overestimates the Landau damping and the HFB gives a better approximation. This result shows that the comparison of the theoretical calculation using the hydrodynamical approach and the experimental data for high temperature done by Vincent Liu (PRL {\bf21} 4056 (1997)) is not proper. For two-dimensional systems, we show that the Beliaev damping rate is proportional to k3k^3 and the Landau damping rate is proportional to T2 T^2 for low temperature and to TT for high temperature. We also show that in two dimensions the hydrodynamical approach gives the same result for zero temperature and for low temperature as HFB, but overestimates the Landau damping for high temperature.Comment: 11 pages, 4 figure

    BCS-BEC crossover in a system of microcavity polaritons

    Full text link
    We investigate the thermodynamics and signatures of a polariton condensate over a range of densities, using a model of microcavity polaritons with internal structure. We determine a phase diagram for this system including fluctuation corrections to the mean-field theory. At low densities the condensation temperature, T_c, behaves like that for point bosons. At higher densities, when T_c approaches the Rabi splitting, T_c deviates from the form for point bosons, and instead approaches the result of a BCS-like mean-field theory. This crossover occurs at densities much less than the Mott density. We show that current experiments are in a density range where the phase boundary is described by the BCS-like mean-field boundary. We investigate the influence of inhomogeneous broadening and detuning of excitons on the phase diagram.Comment: 20 pages, 6 figure

    Production of three-body Efimov molecules in an optical lattice

    Full text link
    We study the possibility of associating meta-stable Efimov trimers from three free Bose atoms in a tight trap realised, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov effect in three-body energy spectra. Our predictions on the energy levels and wave functions of three pairwise interacting 85Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates that it is the lowest energetic Efimov trimer state that can be associated in an adiabatic sweep of the field strength. We show that the binding energies and spatial extents of the trimer molecules produced are comparable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular state follows Efimov's scenario when the pairwise attraction of the atoms is strengthened by tuning the magnetic field strength.Comment: 21 pages, 8 figures (final version

    Theory of Bose-Einstein condensation for trapped atoms

    Full text link
    We outline the general features of the conventional mean-field theory for the description of Bose-Einstein condensates at near zero temperatures. This approach, based on a phenomenological model, appears to give excellent agreement with experimental data. We argue, however, that such an approach is not rigorous and cannot contain the full effect of collisional dynamics due to the presence of the mean-field. We thus discuss an alternative microscopic approach and explain, within our new formalism, the physical origin of these effects. Furthermore, we discuss the potential formulation of a consistent finite-temperature mean-field theory, which we claim necessiates an analysis beyond the conventional treatment.Comment: 12 pages. To appear in Phil. Trans. R. Soc. Lond. A 355 (1997

    Quantum Kinetic Theory of BEC Lattice Gas:Boltzmann Equations from 2PI-CTP Effective Action

    Get PDF
    We continue our earlier work [Ana Maria Rey, B. L. Hu, Esteban Calzetta, Albert Roura and Charles W. Clark, Phys. Rev. A 69, 033610 (2004)] on the nonequilibrium dynamics of a Bose Einstein condensate (BEC) selectively loaded into every third site of a one-dimensional optical lattice. From the two-particle irreducible (2PI) closed-time-path (CTP) effective action for the Bose- Hubbard Hamiltonian, we show how to obtain the Kadanoff-Baym equations of quantum kinetic theory. Using the quasiparticle approximation, we show that the local equilibrium solutions of these equations reproduce the second- order corrections to the self-energy originally derived by Beliaev. This work paves the way for the use of effective action methods in the derivation of quantum kinetic theory of many atom systems.Comment: 21 pages, 0 figures, minor editorial changes were mad

    Non-perturbative renormalization-group approach to zero-temperature Bose systems

    Get PDF
    We use a non-perturbative renormalization-group technique to study interacting bosons at zero temperature. Our approach reveals the instability of the Bogoliubov fixed point when d3d\leq 3 and yields the exact infrared behavior in all dimensions d>1d>1 within a rather simple theoretical framework. It also enables to compute the low-energy properties in terms of the parameters of a microscopic model. In one-dimension and for not too strong interactions, it yields a good picture of the Luttinger-liquid behavior of the superfluid phase.Comment: v1) 6 pages, 8 figures; v2) added references; v3) corrected typo

    Nonequilibrium Dynamics of Optical Lattice-Loaded BEC Atoms: Beyond HFB Approximation

    Get PDF
    In this work a two-particle irreducible (2PI) closed-time-path (CTP) effective action is used to describe the nonequilibrium dynamics of a Bose Einstein condensate (BEC) selectively loaded into every third site of a one-dimensional optical lattice. The motivation of this work is the recent experimental realization of this system at National Institute of Standards and Technology (NIST) where the placement of atoms in an optical lattice is controlled by using an intermediate superlattice. Under the 2PI CTP scheme with this initial configuration, three different approximations are considered: a) the Hartree-Fock-Bogoliubov (HFB) approximation, b) the next-to-leading order 1/N\mathcal{N} expansion of the 2PI effective action up to second order in the interaction strength and c) a second order perturbative expansion in the interaction strength. We present detailed comparisons between these approximations and determine their range of validity by contrasting them with the exact many body solution for a moderate number of atoms and wells. As a general feature we observe that because the second order 2PI approximations include multi-particle scattering in a systematic way, they are able to capture damping effects exhibited in the exact solution that a mean field collisionless approach fails to produce. While the second order approximations show a clear improvement over the HFB approximation our numerical result shows that they do not work so well at late times, when interaction effects are significant.Comment: 34 pages, 7 figure

    Dynamical Structure Factor and Spin-Density Separation for a Weakly-Interacting Two-Component Bose Gas

    Full text link
    We show that spin-density separation in a Bose gas is not restricted to 1D but also occurs in higher dimension. The ratio (α\alpha) of the intra-species atom-atom interaction strength to the inter-species interaction strength, strongly influences the dynamics of spin-density separation and the elementary excitations. The density wave is phonon-like for all values of α\alpha. For α<1\alpha<1, spin wave is also phonon-like. The spin waves have a quadratic dispersion in the α=1\alpha=1 coupling regime, while in the phase separated regime (α>1\alpha>1) the spin waves are found to be damped. The dynamical structure factor (DSF) reveals two distinct peaks corresponding to the density and spin waves for α1\alpha \le 1. For α>1\alpha > 1 there is only one DSF peak corresponding to the density wave.Comment: 4 pages, 2 figure

    Infrared behavior of interacting bosons at zero temperature

    Full text link
    We review the infrared behavior of interacting bosons at zero temperature. After a brief discussion of the Bogoliubov approximation and the breakdown of perturbation theory due to infrared divergences, we present two approaches that are free of infrared divergences -- Popov's hydrodynamic theory and the non-perturbative renormalization group -- and allow us to obtain the exact infrared behavior of the correlation functions. We also point out the connection between the infrared behavior in the superfluid phase and the critical behavior at the superfluid--Mott-insulator transition in the Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010

    Weakly Interacting, Dilute Bose Gases in 2D

    Full text link
    This article surveys a number of theoretical problems and open questions in the field of two-dimensional dilute Bose gases with weak repulsive interactions. In contrast to three dimensions, in two dimensions the formation of long-range order is prohibited by the Bogoliubov-Hohenberg theorem, and Bose-Einstein condensation is not expected to be realized. Nevertheless, first experimental indications supporting the formation of the condensate in low dimensional systems have been recently obtained. This unexpected behaviour appears to be due to the non-uniformity, introduced into a system by the external trapping potential. Theoretical predictions, made for homogeneous systems, require therefore careful reexamination. We survey a number of popular theoretical treatments of the dilute weakly interacting Bose gas and discuss their regions of applicability. The possibility of Bose-Einstein condensation in a two-dimensional gas, the validity of perturbative t-matrix approximation and diluteness condition are issues that we discuss in detail.Comment: Survey, 25 pages RMP style, revised version, refs added, some changes made, accepted for publication in Rev. Mod. Phy
    corecore