2,864 research outputs found
Solar Activity Modeling: From Subgranular Dynamical Scales to the Solar Cycles
Dynamical effects of solar magnetoconvection span a wide range spatial and temporal scales that extends from the interior to the corona and from fast turbulent motions to the global-Sun magnetic activity. To study the solar activity on short temporal scales (from minutes to hours), we use 3D radiative MHD simulations that allow us to investigate complex turbulent interactions that drive various phenomena, such as plasma eruptions, spontaneous formation of magnetic structures, funnel-like structures and magnetic loops in the corona, and others. In particular, we focus on multi-scale processes of energy exchange across the different layers, which contribute to the corona heating and eruptive dynamics, as well as interlinks between different layers of the solar interior and atmosphere. For modeling the global-scale activity we use the data assimilation approach that has demonstrated great potential for building reliable long-term forecasts of solar activity. In particular, it has been shown that the Ensemble Kalman Filter (EnKF) method applied to the Parker-Kleeorin-Ruzmakin dynamo model is capable of predicting solar activity up to one sunspot cycle ahead in time, as well as estimating the properties of the next cycle a few years before it begins. In this presentation, using the available magnetogram data, we discuss development of the methodology and forecast quality criteria (including forecast uncertainties and sources of errors). We demonstrate the influence of observational limitation on the prediction accuracy. We present the EnKF predictions of the upcoming Solar Cycle 25 based on both the sunspot number series and observed magnetic fields, and discuss the uncertainties and potential of the data assimilation approach for modeling and forecasting the solar activity
Solar Activity Modeling: From Subgranular Dynamical Scales to the Solar Cycles
The dynamical effects of solar magnetoconvection span a wide range spatial and temporal scales that extend from the interior to the corona and from fast turbulent motions to global magnetic activity. To study the solar activity on short temporal scales (from minutes to hours), we use 3D radiative MHD simulations that allow us to investigate complex turbulent interactions that drive various phenomena, such as plasma eruptions, spontaneous formation of magnetic structures, funnel-like structures and magnetic loops in the corona, and others. In particular, we focus on multi-scale processes of energy exchange across layers of the solar interior and atmosphere, which contribute to coronal heating and eruptive dynamics. For modeling global-scale activity, we use a data assimilation approach that has demonstrated great potential for building reliable long-term forecasts of solar activity. In particular, it has been shown that the Ensemble Kalman Filter (EnKF) method applied to the Parker-Kleeorin-Ruzmakin dynamo model is capable of predicting solar activity up to one sunspot cycle ahead in time, as well as estimating the properties of the next cycle a few years before it begins. In this presentation, using the available magnetogram data, we discuss development of the methodology and forecast quality criteria (including forecast uncertainties and sources of errors). We demonstrate the influence of observational limitations on prediction accuracy, and we present the EnKF predictions of the upcoming Solar Cycle (25) based on both the sunspot number series and observed magnetic fields and discuss the uncertainties and potential of the data assimilation approach for modeling and forecasting solar activity
Electrotransport and magnetic properies of Cr-GaSb spintronic materials synthesized under high pressure
Electrotarnsport and magnetic properties of new phases in the system Cr-GaSb
were studied. The samples were prepared by high-pressure (P=6-8 GPa)
high-temperature treatment and identified by x-ray diffraction and scanning
electron microscopy (SEM). One of the CrGaSb phases with an
orthorhombic structure has a combination of ferromagnetic and
semiconductor properties and is potentially promising for spintronic
applications. Another high-temperature phase is paramagnetic and identified as
tetragonal
Characteristics of anomalously high multiplicity cosmic ray interactions
Six events with the number of secondaries ranging from 250 to several thousands were registered by an installation consisting of a thin graphite target, above and under which are placed photolayers followed by the usual lead X-ray film and emulsion chambers. Data concerning the number of secondaries and their angular distribution are given. The variance of the angular distribution is compared with data obtained at accelerator energies
- …