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Solar Activity Modeling: from Subgranular Dynamical Scales to the Solar Cycles
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The dynamical effects of solar magnetoconvection span a wide range spatial and temporal scales that extend from the interior to the corona and from fast turbulent motions to global magnetic activity. To study the solar activity on short temporal scales (from minutes to hours), we use 3D radiative MHD simulations that allow us to investigate complex ti
interactions that drive various phenomena, such as plasma eruptions, spontaneous formation of magnetic structures, funnel-like structures and magnetic loops in the corona, and others. In particular, we focus on multi-scale processes of energy exchange across layers of the solar interior and atmosphere, which contribute to coronal heating and eruptive dynami
modeling global-scale activity, we use a data assimilation approach that has demonstrated great potential for building reliable long-term forecasts of solar activity. In particular, it has been shown that the Ensemble Kalman Filter (EnKF) method applied to the Parker-Kleeorin-Ruzmakin dynamo model is capable of predicting solar activity up to one sunspot cycle al
time, as well as estimating the properties of the next cycle a few years before it begins. In this presentation, using the available magnetogram data, we discuss development of the methodology and forecast quality criteria (including forecast uncertainties and sources of errors). We demonstrate the influence of observational limitations on prediction accuracy,

present the EnKF predictions of the upcoming Solar Cycle (25) based on both the sunspot number series and observed magnetic fields and discuss the uncertainties and potential of the data assimilation approach for modeling and forecasting solar activity.

‘StellarBox’ code (Wray et al., 2018)

v 3D rectangular geometry
v Fully conservative, Fully compressible
v Fully coupled radiation solver:
LTE using 4 opacity-distribution-function bins
Ray-racing transport by Feautrier method
18 ray angular quadrature
v Non-ideal (tabular) EOS
v 4th order Padé spatial discretization
v 4th order Runge-Kutta time integration
v Turbulence models:
- Compressible Smagorinsky model
- Compressible Dynamics Smagorinsky mode
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Temporal profiles of the variation of the mean vertical =
velocity in a vortex core, at different levels below the
surface and in the atmosphere. The thick black curve
shows the variation at the photosphere layer. The
height difference between the curves is 60 km.
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Magnetic field distribution at the photosphere
Magnetic structures formed by a turbulent =¥ 35
dynamo on the Sun, generated from an
initial random seed field. The blue-red color
scale corresponds to magnetic field strength —
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Modeling of self-organization processes in the solar corona
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Conclusions |
To investigate the underlying physical processes, we performed 3D radiative MHD simulations, taking

local dynamo process, spontaneous flow eruptions, and coronal structure and dynamics in the quiet-
Sun. The simulations revealed three important properties of the dynamo-generated magnetic fields: 1)
strong coupling of various magnetic field amplification mechanisms, which leads to increased local
magnetic energy, 2) the multi-scale nature of the dynamo process, which involves turbulent flows from
the smallest resolved scales to granular scales, 3) a complex topological and dynamical structure of

into account all essential physics and employing sub-grid scale turbulence models, and reproduce the [
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View through the solar atmosphere

transition zone and corona. The simulation results show a self-
formed magnetic structure in the corona that is connected with

kilogauss magnetic field in the

the process, which is reflected in the interaction of individual magnetic patches and
magnetic fields and in the self-organization that produces a magnetic network.

Our simulations reveal penetration of vortex tubes from the photosphere into the corona. The vortex
tube eruptions cause significant qualitative changes in atmospheric dynamics, such as strong
variations in the thermodynamic structure, magnetic field-fine topology, and local heating, and are also
a source of local twisted upflows in the chromosphere. The plasma flow in the eruptions is accelerated
by the Lorentz force from 6 to 12-15 km/s in higher (mid-chromospheric) layers.

Using an advanced 3D radiative MHD code, “StellarBox’, we have performed the first high-resolution
simulations of the Sun from the deep convection zone to the corona. It is found that the transition
zone between the low temperature (10¢ K) chromosphere and hot (10° K) coronais substantially more
turbulent and dynamic than previously assumed. The simulations revealed new processes of
generation of shocks and plasma eruptions and showed that transition-region dynamics s a source of
coronal expansion and formation of the solar wind.
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amplitude at the start of Cycles 20 and 24 is
substantially lower than during the other minima.
The large-scale magnetic helicity shows significantly
better correlation with future sunspot numbers; in
particular, the magnetic helicity ~substantially
decreases prior to weak sunspot cycles

Gomparison of hemispheric sunspot numbers, observed and inferred from magnetograms

Synoptic magnetogram. The color scale is saturated at +/-15G. The
:  yellow dashed lines indicate different moments of time: 1992 and 1994.
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In this work we take advantage of synoptic obs
magnetic field emerging on the surface of
develop a more advanced and reliable forecasti
The observational data are assimilated into 3
dynamo model which provides a theoretical def
the generation and evolution of the global mag
the Sun. Using the currently available observa
predictions and prediction uncertainties
calculated for Solar Cycle 25. The results bas
the sunspot number series and observed m:
indicate that the upcoming Solar Maximum (§
25) is expected to be weaker than that of the ¢
(which near its end). The mode! results show
extended solar activity minimum is expecte
2019-2021, the maximum will occur in 2024 -
the mean sunspot number at the maximum w
50 (for the v2.0 sunspot number series) wi
estimate of ~15%. The maximum is likely to be
normal (over 2 — 2.5-years), as the predictio
show, or could exhibit a double hump structure.
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