337 research outputs found

    Renormalisation-theoretic analysis of non-equilibrium phase transitions II: The effect of perturbations on rate coefficients in the Becker-Doring equations

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. In particular, we investigate the Becker-Doring (BD) equations, originally formulated to describe and analyse non-equilibrium phase transitions, but more recently generalised to describe a wide range of physicochemical problems. We consider here rate coefficients which depend on the cluster size in a power-law fashion, but now perturbed by small amplitude random noise. Power-law rate coefficients arise naturally in the theory of surface-controlled nucleation and growth processes. The noisy perturbations on these rates reflect the effect of microscopic variations in such mean-field coefficients, thermal fluctuations and/or experimental uncertainties. In the present paper we generalise our earlier work that identified the nine classes into which all dynamical behaviour must fall by investigating how random perturbations of the rate coefficients influence the steady-state and kinetic behaviour of the coarse-grained, renormalised system. We are hence able to confirm the existence of a set of up to nine universality classes for such BD systems.Comment: 30 pages, to appear in J Phys A Math Ge

    Dissipative Particle Dynamics with energy conservation

    Full text link
    Dissipative particle dynamics (DPD) does not conserve energy and this precludes its use in the study of thermal processes in complex fluids. We present here a generalization of DPD that incorporates an internal energy and a temperature variable for each particle. The dissipation induced by the dissipative forces between particles is invested in raising the internal energy of the particles. Thermal conduction occurs by means of (inverse) temperature differences. The model can be viewed as a simplified solver of the fluctuating hydrodynamic equations and opens up the possibility of studying thermal processes in complex fluids with a mesoscopic simulation technique.Comment: 5 page

    Renormalisation-theoretic analysis of non-equilibrium phase transitions I: The Becker-Doring equations with power law rate coefficients

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. We investigate the Becker-Dorging equations, originally formulated to describe and analyse non-equilibrium phase transitions, and more recently generalised to describe a wide range of physicochemical problems. In the present paper we analyse how the systematic coarse-graining renormalisation of the \BD system of equations affects the aggregation and fragmentation rate coefficients. We consider the case of power-law size-dependent cluster rate coefficients which we show lead to only three classes of system that require analysis: coagulation-dominated systems, fragmentation-dominated systems and those where coagulation and fragmentation are exactly balanced. We analyse the late-time asymptotics associated with each class.Comment: 18 pages, to appear in J Phys A Math Ge

    Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media

    Full text link
    The behaviour of two dimensional binary and ternary amphiphilic fluids under flow conditions is investigated using a hydrodynamic lattice gas model. After the validation of the model in simple cases (Poiseuille flow, Darcy's law for single component fluids), attention is focussed on the properties of binary immiscible fluids in porous media. An extension of Darcy's law which explicitly admits a viscous coupling between the fluids is verified, and evidence of capillary effects are described. The influence of a third component, namely surfactant, is studied in the same context. Invasion simulations have also been performed. The effect of the applied force on the invasion process is reported. As the forcing level increases, the invasion process becomes faster and the residual oil saturation decreases. The introduction of surfactant in the invading phase during imbibition produces new phenomena, including emulsification and micellisation. At very low fluid forcing levels, this leads to the production of a low-resistance gel, which then slows down the progress of the invading fluid. At long times (beyond the water percolation threshold), the concentration of remaining oil within the porous medium is lowered by the action of surfactant, thus enhancing oil recovery. On the other hand, the introduction of surfactant in the invading phase during drainage simulations slows down the invasion process -- the invading fluid takes a more tortuous path to invade the porous medium -- and reduces the oil recovery (the residual oil saturation increases).Comment: 48 pages, 26 figures. Phys. Rev. E (in press

    Symmetry-breaking in chiral polymerisation

    Get PDF
    We propose a model for chiral polymerisation and investigate its symmetric and asymmetric solutions. The model has a source species which decays into left- and right-handed types of monomer, each of which can polymerise to form homochiral chains; these chains are susceptible to `poisoning' by the opposite handed monomer. Homochiral polymers are assumed to influence the proportion of each type of monomer formed from the precursor. We show that for certain parameter values a positive feedback mechanism makes the symmetric steady-state solution unstable. The kinetics of polymer formation are then analysed in the case where the system starts from zero concentrations of monomer and chains. We show that following a long induction time, extremely large concentrations of polymers are formed for a short time, during this time an asymmetry introduced into the system by a random external perturbation may be massively amplified. The system then approaches one of the steady-state solutions described above.Comment: 26pages, 6 Figure

    Prediction of the functional properties of ceramic materials from composition using artificial neural networks

    Get PDF
    We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filtering equipment. Ionic and mixed conductors are the subjects of a concerted effort in the search for new materials that can be incorporated into efficient, clean electrochemical devices of interest in energy production and greenhouse gas reduction applications. Multi-layer perceptron ANNs are trained using the back-propagation algorithm and utilise data obtained from the literature to learn composition-property relationships between the inputs and outputs of the system. The trained networks use compositional information to predict the relative permittivity and oxygen diffusion properties of ceramic materials. The results show that ANNs are able to produce accurate predictions of the properties of these ceramic materials which can be used to develop materials suitable for use in telecommunication and energy production applications

    Using lambda networks to enhance performance of interactive large simulations

    No full text
    The ability to use a visualisation tool to steer large simulations provides innovative and novel usage scenarios, e.g. the ability to use new algorithms for the computation of free energy profiles along a nanopore [1]. However, we find that the performance of interactive simulations is sensitive to the quality of service of the network with variable latency and packet loss in particular having a detrimental effect The use of dedicated networks (provisioned in this case as a circuit-switched point-to-point optical lightpath or lambda) can lead to significant (50% or more) performance enhancement, When funning on say 128 or 256 processors of a high-end supercomputer this saving has a significant value. We perform experiments to understand the impact of network characteristics on the performance of a large parallel classical molecular dynamics simulation when coupled interactively to a remote visualisation tool. This paper discusses the experiments performed and presents the results from the systematic studies. © 2006 IEEE.Published versio

    Foundations of Dissipative Particle Dynamics

    Full text link
    We derive a mesoscopic modeling and simulation technique that is very close to the technique known as dissipative particle dynamics. The model is derived from molecular dynamics by means of a systematic coarse-graining procedure. Thus the rules governing our new form of dissipative particle dynamics reflect the underlying molecular dynamics; in particular all the underlying conservation laws carry over from the microscopic to the mesoscopic descriptions. Whereas previously the dissipative particles were spheres of fixed size and mass, now they are defined as cells on a Voronoi lattice with variable masses and sizes. This Voronoi lattice arises naturally from the coarse-graining procedure which may be applied iteratively and thus represents a form of renormalisation-group mapping. It enables us to select any desired local scale for the mesoscopic description of a given problem. Indeed, the method may be used to deal with situations in which several different length scales are simultaneously present. Simulations carried out with the present scheme show good agreement with theoretical predictions for the equilibrium behavior.Comment: 18 pages, 7 figure
    corecore