2,090 research outputs found

    Fission Decay Widths for Heavy-Ion Fusion-Fission Reactions

    Full text link
    Cross-section and neutron-emission data from heavy-ion fusion-fission reactions are consistent with a Kramers-modified statistical model which takes into account the collective motion of the system about the ground state; the temperature dependence of the location of fission transition points; and the orientation degree of freedom. We see no evidence to suggest that the nuclear viscosity departs from the surface-plus-window dissipation model. The strong increase in the nuclear viscosity above a temperature of ~1 MeV deduced by others is an artifact generated by an inadequate fission model.Comment: 14 pg, 6 fig, submitted to Physical Revie

    Distribution of occupation numbers in finite Fermi-systems and role of interaction in chaos and thermalization

    Full text link
    New method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model.Comment: 4 pages, Latex, 4 figures in the form of PS-file

    Quadrupole collective variables in the natural Cartan-Weyl basis

    Get PDF
    The matrix elements of the quadrupole collective variables, emerging from collective nuclear models, are calculated in the natural Cartan-Weyl basis of O(5) which is a subgroup of a covering SU(1,1)Ă—O(5)SU(1,1)\times O(5) structure. Making use of an intermediate set method, explicit expressions of the matrix elements are obtained in a pure algebraic way, fixing the Îł\gamma-rotational structure of collective quadrupole models.Comment: submitted to Journal of Physics

    Exponential increase of energy level density in atoms: Th and Th II

    Full text link
    We present analytical estimates and numerical calculations showing that the energy level density in open-shell atoms increases exponentially with increase of excitation energy. As an example, we use the relativistic Hartree-Fock and configuration interaction methods to calculate the density of states of Th and Th II. The result is used to estimate the effect of electrons on the nuclear transition which is considered for the use in a nuclear clock.Comment: 4 pages, 1 figure, 3 tables

    Two-phonon Îł\gamma-vibrational states in rotating triaxial odd-AA nuclei

    Full text link
    Distribution of the two phonon γ\gamma vibrational collectivity in the rotating triaxial odd-AA nucleus, 103^{103}Nb, that is one of the three nuclides for which experimental data were reported recently, is calculated in the framework of the particle vibration coupling model based on the cranked shell model plus random phase approximation. This framework was previously utilized for analyses of the zero and one phonon bands in other mass region and is applied to the two phonon band for the first time. In the present calculation, three sequences of two phonon bands share collectivity almost equally at finite rotation whereas the K=Ω+4K=\Omega+4 state is the purest at zero rotation.Comment: 15 pages, 3 figures, accepted for publication in Physical Review

    Geometric factors in the Bohr--Rosenfeld analysis of the measurability of the electromagnetic field

    Full text link
    The Geometric factors in the field commutators and spring constants of the measurement devices in the famous analysis of the measurability of the electromagnetic field by Bohr and Rosenfeld are calculated using a Fourier--Bessel method for the evaluation of folding integrals, which enables one to obtain the general geometric factors as a Fourier--Bessel series. When the space region over which the factors are defined are spherical, the Fourier--Bessel series terms are given by elementary functions, and using the standard Fourier-integral method of calculating folding integrals, the geometric factors can be evaluated in terms of manageable closed-form expressions.Comment: 21 pages, REVTe

    Exact diagonalization of the Bohr Hamiltonian for rotational nuclei: Dynamical gamma softness and triaxiality

    Full text link
    Detailed quantitative predictions are obtained for phonon and multiphonon excitations in well-deformed rotor nuclei within the geometric framework, by exact numerical diagonalization of the Bohr Hamiltonian in an SO(5) basis. Dynamical gamma deformation is found to significantly influence the predictions through its coupling to the rotational motion. Basic signatures for the onset of rigid triaxial deformation are also obtained.Comment: 17 pages, 10 figures; to be published Phys. Rev.

    Nonlocality of Accelerated Systems

    Get PDF
    The conceptual basis for the nonlocality of accelerated systems is presented. The nonlocal theory of accelerated observers and its consequences are briefly described. Nonlocal field equations are developed for the case of the electrodynamics of linearly accelerated systems.Comment: LaTeX file, no figures, 9 pages, to appear in: "Black Holes, Gravitational Waves and Cosmology" (World Scientific, Singapore, 2003

    Investigation of Pygmy Dipole Resonances in the Tin Region

    Full text link
    The evolution of the low-energy electromagnetic dipole response with the neutron excess is investigated along the Sn isotopic chain within an approach incorporating Hartree-Fock-Bogoljubov (HFB) and multi-phonon Quasiparticle-Phonon-Model (QPM) theory. General aspects of the relationship of nuclear skins and dipole sum rules are discussed. Neutron and proton transition densities serve to identify the Pygmy Dipole Resonance (PDR) as a generic mode of excitation. The PDR is distinct from the GDR by its own characteristic pattern given by a mixture of isoscalar and isovector components. Results for the 100^{100}Sn-132^{132}Sn isotopes and the several N=82 isotones are presented. In the heavy Sn-isotopes the PDR excitations are closely related to the thickness of the neutron skin. Approaching 100^{100}Sn a gradual change from a neutron to a proton skin is found and the character of the PDR is changed correspondingly. A delicate balance between Coulomb and strong interaction effects is found. The fragmentation of the PDR strength in 124^{124}Sn is investigated by multi-phonon calculations. Recent measurements of the dipole response in 130,132^{130,132}Sn are well reproduced.Comment: 41 pages, 10 figures, PR

    Enhanced effect of temporal variation of the fine structure constant in diatomic molecules

    Full text link
    We show that the relative effect of variation of the fine structure constant in microwave transitions between very close and narrow rotational-hyperfine levels may be enhanced 2-3 orders of magnitude in diatomic molecules like LaS, LaO, LuS, YbF, etc. The enhancement is a result of cancellation between the hyperfine and rotational intervals
    • …
    corecore