1,418 research outputs found
The Physics of UHECRs: Spectra, Composition and the Transition Galactic-Extragalactic
We review the experimental evidences about flux and mass composition of ultra
high energy cosmic rays in connection with theoretical scenarios concerning
astrophysical sources. In this context, we also address the discussion about
the expected transition between cosmic rays produced inside the Galaxy and
those coming from the intergalactic space.Comment: 6 pages, 10 figures, invited talk given at the "2016 International
Conference on Ultra-High Energy Cosmic Rays (UHECR2016)", Kyoto (Japan),
11-14 October 2016, version accepted for publication on JPS Conference
Proceeding
The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers
The AMY experiment aims to measure the microwave bremsstrahlung radiation
(MBR) emitted by air-showers secondary electrons accelerating in collisions
with neutral molecules of the atmosphere. The measurements are performed using
a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN
National Laboratories. The goal of the AMY experiment is to measure in
laboratory conditions the yield and the spectrum of the GHz emission in the
frequency range between 1 and 20 GHz. The final purpose is to characterise the
process to be used in a next generation detectors of ultra-high energy cosmic
rays. A description of the experimental setup and the first results are
presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High
Energy Physics (July, 18-24, 2013) at Stockholm, Swede
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
INFN Camera demonstrator for the Cherenkov Telescope Array
The Cherenkov Telescope Array is a world-wide project for a new generation of
ground-based Cherenkov telescopes of the Imaging class with the aim of
exploring the highest energy region of the electromagnetic spectrum. With two
planned arrays, one for each hemisphere, it will guarantee a good sky coverage
in the energy range from a few tens of GeV to hundreds of TeV, with improved
angular resolution and a sensitivity in the TeV energy region better by one
order of magnitude than the currently operating arrays. In order to cover this
wide energy range, three different telescope types are envisaged, with
different mirror sizes and focal plane features. In particular, for the highest
energies a possible design is a dual-mirror Schwarzschild-Couder optical
scheme, with a compact focal plane. A silicon photomultiplier (SiPM) based
camera is being proposed as a solution to match the dimensions of the pixel
(angular size of ~ 0.17 degrees). INFN is developing a camera demonstrator made
by 9 Photo Sensor Modules (PSMs, 64 pixels each, with total coverage 1/4 of the
focal plane) equipped with FBK (Fondazione Bruno Kessler, Italy) Near
UltraViolet High Fill factor SiPMs and Front-End Electronics (FEE) based on a
Target 7 ASIC, a 16 channels fast sampler (up to 2GS/s) with deep buffer,
self-trigger and on-demand digitization capabilities specifically developed for
this purpose. The pixel dimensions of mm lead to a very compact
design with challenging problems of thermal dissipation. A modular structure,
made by copper frames hosting one PSM and the corresponding FEE, has been
conceived, with a water cooling system to keep the required working
temperature. The actual design, the adopted technical solutions and the
achieved results for this demonstrator are presented and discussed.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
A novel method for the absolute fluorescence yield measurement by AIRFLY
One of the goals of the AIRFLY (AIR FLuorescence Yield) experiment is to
measure the absolute fluorescence yield induced by electrons in air to better
than 10% precision. We introduce a new technique for measurement of the
absolute fluorescence yield of the 337 nm line that has the advantage of
reducing the systematic uncertainty due to the detector calibration. The
principle is to compare the measured fluorescence yield to a well known process
- the Cerenkov emission. Preliminary measurements taken in the BFT (Beam Test
Facility) in Frascati, Italy with 350 MeV electrons are presented. Beam tests
in the Argonne Wakefield Accelerator at the Argonne National Laboratory, USA
with 14 MeV electrons have also shown that this technique can be applied at
lower energies.Comment: presented at the 5th Fluorescence Workshop, El Escorial - Madrid,
Spain, 16 - 20 September 200
Optical High Content Nanoscopy of Epigenetic Marks Decodes Phenotypic Divergence in Stem Cells
While distinct stem cell phenotypes follow global changes in chromatin marks, single-cell chromatin technologies are unable to resolve or predict stem cell fates. We propose the first such use of optical high content nanoscopy of histone epigenetic marks (epi-marks) in stem cells to classify emergent cell states. By combining nanoscopy with epi-mark textural image informatics, we developed a novel approach, termed EDICTS (Epi-mark Descriptor Imaging of Cell Transitional States), to discern chromatin organizational changes, demarcate lineage gradations across a range of stem cell types and robustly track lineage restriction kinetics. We demonstrate the utility of EDICTS by predicting the lineage progression of stem cells cultured on biomaterial substrates with graded nanotopographies and mechanical stiffness, thus parsing the role of specific biophysical cues as sensitive epigenetic drivers. We also demonstrate the unique power of EDICTS to resolve cellular states based on epi-marks that cannot be detected via mass spectrometry based methods for quantifying the abundance of histone posttranslational modifications. Overall, EDICTS represents a powerful new methodology to predict single cell lineage decisions by integrating high content super-resolution nanoscopy and imaging informatics of the nuclear organization of epi-marks.National Institutes of Health (U.S.) (Grant GM110174
- …
