647 research outputs found

    Formation of molecular hydrogen on analogues of interstellar dust grains: experiments and modelling

    Full text link
    Molecular hydrogen has an important role in the early stages of star formation as well as in the production of many other molecules that have been detected in the interstellar medium. In this review we show that it is now possible to study the formation of molecular hydrogen in simulated astrophysical environments. Since the formation of molecular hydrogen is believed to take place on dust grains, we show that surface science techniques such as thermal desorption and time-of-flight can be used to measure the recombination efficiency, the kinetics of reaction and the dynamics of desorption. The analysis of the experimental results using rate equations gives useful insight on the mechanisms of reaction and yields values of parameters that are used in theoretical models of interstellar cloud chemistry.Comment: 23 pages, 7 figs. Published in the J. Phys.: Conf. Se

    Master Equation for Hydrogen Recombination on Grain Surfaces

    Get PDF
    Recent experimental results on the formation of molecular hydrogen on astrophysically relevant surfaces under conditions similar to those encountered in the interstellar medium provided useful quantitative information about these processes. Rate equation analysis of experiments on olivine and amorphous carbon surfaces provided the activation energy barriers for the diffusion and desorption processes relevant to hydrogen recombination on these surfaces. However, the suitability of rate equations for the simulation of hydrogen recombination on interstellar grains, where there might be very few atoms on a grain at any given time, has been questioned. To resolve this problem, we introduce a master equation that takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. The hydrogen recombination rate on microscopic grains, as a function of grain size and temperature, is then calculated using the master equation. The results are compared to those obtained from the rate equations and the conditions under which the master equation is required are identified.Comment: Latex document. 14 pages of text. Four associated figs in in PS format on separate files that are "called-in" the LaTeX documen

    Molecular Hydrogen Formation on Ice Under Interstellar Conditions

    Full text link
    The results of experiments on the formation of molecular hydrogen on low density and high density amorphous ice surfaces are analyzed using a rate equation model. The activation energy barriers for the relevant diffusion and desorption processes are obtained. The more porous morphology of the low density ice gives rise to a broader spectrum of energy barriers compared to the high density ice. Inserting these parameters into the rate equation model under steady state conditions we evaluate the production rate of molecular hydrogen on ice-coated interstellar dust grains.Comment: 20 pages, 3 tables and 10 figures. Accepted to ApJ. Minor changes made and adittional references adde

    H2 Formation on Interstellar Grains in Different Physical Regimes

    Get PDF
    An analysis of the kinetics of H2 formation on interstellar dust grains is presented using rate equations. It is shown that semi-empirical expressions that appeared in the literature represent two different physical regimes. In particular, it is shown that the expression given by Hollenbach, Werner and Salpeter [ApJ, 163, 165 (1971)] applies when high flux, or high mobility, of H atoms on the surface of a grain, makes it very unlikely that H atoms evaporate before they meet each other and recombine. The expression of Pirronello et al.\ [ApJ, 483, L131 (1997)] -- deduced on the basis of accurate measurements on realistic dust analogue -- applies to the opposite regime (low coverage and low mobility). The implications of this analysis for the understanding of the processes dominating in the Interstellar Medium are discussed.Comment: 4 pages, MN styl

    On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system

    Full text link
    We have used the master equation approach to study a moderately complex network of diffusive reactions occurring on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those obtained with standard rate equations.Comment: 13 pages, 5 figure

    Exact results for hydrogen recombination on dust grain surfaces

    Full text link
    The recombination of hydrogen in the interstellar medium, taking place on surfaces of microscopic dust grains, is an essential process in the evolution of chemical complexity in interstellar clouds. The H_2 formation process has been studied theoretically, and in recent years also by laboratory experiments. The experimental results were analyzed using a rate equation model. The parameters of the surface, that are relevant to H_2 formation, were obtained and used in order to calculate the recombination rate under interstellar conditions. However, it turned out that due to the microscopic size of the dust grains and the low density of H atoms, the rate equations may not always apply. A master equation approach that provides a good description of the H_2 formation process was proposed. It takes into account both the discrete nature of the H atoms and the fluctuations in the number of atoms on a grain. In this paper we present a comprehensive analysis of the H_2 formation process, under steady state conditions, using an exact solution of the master equation. This solution provides an exact result for the hydrogen recombination rate and its dependence on the flux, the surface temperature and the grain size. The results are compared with those obtained from the rate equations. The relevant length scales in the problem are identified and the parameter space is divided into two domains. One domain, characterized by first order kinetics, exhibits high efficiency of H_2 formation. In the other domain, characterized by second order kinetics, the efficiency of H_2 formation is low. In each of these domains we identify the range of parameters in which, the rate equations do not account correctly for the recombination rate. and the master equation is needed.Comment: 23 pages + 8 figure

    Use of Laboratory Data to Model Interstellar Chemistry

    Get PDF
    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments

    Molecular Hydrogen Formation on Low Temperature Surfaces in Temperature Programmed Desorption Experiments

    Full text link
    The study of the formation of molecular hydrogen on low temperature surfaces is of interest both because it allows to explore elementary steps in the heterogeneous catalysis of a simple molecule and because of the applications in astrochemistry. Here we report results of experiments of molecular hydrogen formation on amorphous silicate surfaces using temperature-programmed desorption (TPD). In these experiments beams of H and D atoms are irradiated on the surface of an amorphous silicate sample. The desorption rate of HD molecules is monitored using a mass spectrometer during a subsequent TPD run. The results are analyzed using rate equations and the activation energies of the processes leading to molecular hydrogen formation are obtained from the TPD data. We show that a model based on a single isotope provides the correct results for the activation energies for diffusion and desorption of H atoms. These results can thus be used to evaluate the formation rate of H_2 on dust grains under the actual conditions present in interstellar clouds.Comment: 30 pages, 1 table, 6 figures. Published versio

    Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

    Full text link
    Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.Comment: ApJ, March 2006, v639 issue, 43 pages, 7 figure

    Molecular Hydrogen Emission from Protoplanetary Disks II. Effects of X-ray Irradiation and Dust Evolution

    Get PDF
    Detailed models for the density and temperature profiles of gas and dust in protoplanetary disks are constructed by taking into account X-ray and ultraviolet (UV) irradiation from a central T Tauri star, as well as dust size growth and settling toward the disk midplane. The spatial and size distributions of dust grains in the disks are numerically computed by solving the coagulation equation for settling dust particles. The level populations and line emission of molecular hydrogen are calculated using the derived physical structure of the disks. X-ray irradiation is the dominant heating source of the gas in the inner disk region and in the surface layer, while the far UV heating dominates otherwise. If the central star has strong X-ray and weak UV radiation, the H2 level populations are controlled by X-ray pumping, and the X-ray induced transition lines could be observable. If the UV irradiation is strong, the level populations are controlled by thermal collisions or UV pumping, depending on the properties of the dust grains in the disks. As the dust particles evolve in the disks, the gas temperature at the disk surface drops because the grain photoelectric heating becomes less efficient, while the UV radiation fields become stronger due to the decrease of grain opacity. This makes the H2 level populations change from local thermodynamic equilibrium (LTE) to non-LTE distributions, which results in changes to the line ratios of H2 emission. Our results suggest that dust evolution in protoplanetary disks could be observable through the H2 line ratios. The emission lines are strong from disks irradiated by strong UV and X-rays and possessing small dust grains; such disks will be good targets in which to observe H2 emission.Comment: 33 pages, accepted for publication in the Astrophysical Journa
    corecore