117 research outputs found

    Design, Implementation and Testing of a Network-Based Earthquake Early Warning System in Greece

    Get PDF
    In this study we implemented and tested the Earthquake Early Warning system PRESTo (PRobabilistic and Evolutionary early warning System, Satriano et al., 2011) on the Greek Ionian islands of Lefkada, Zakynthos and Kefalonia. PRESTo is a free and open source platform for regional Earthquake Early Warning developed at the University of Naples Federico II, which is currently under experimentation in Southern Italy, in the area covered by the Irpinia Seismic Network. The three Ionian islands selected for this study are located on the North-Western part of the Hellenic trench. Here the seismicity rate and the seismic hazard, coupled with the vulnerability of existing critical infrastructures, make this region among the highest seismic risk areas in Europe, where the application of Earthquake Early Warning systems may become a useful strategy to mitigate the potential damage caused by earthquakes. Here we studied the feasibility of implementing an Earthquake Early Warning system on an existing seismic network, which was not specifically made for earthquake early warning purposes, and evaluated the performance of the system, using a data set of real-earthquake recordings. We first describe the technical details of the implementation of PRESTo in the area of interest, including the preliminary parameter configuration and the empirical scaling relationship calibration. Then we evaluated the performance of the system through the off-line analysis of a database of real earthquake records belonging to the most recent M > 4.0 earthquakes occurred in the area. We evaluated the performance in terms of source parameter estimation (location, magnitude), accuracy of ground shaking prediction and lead-time analysis. Finally, we show the preliminary results of the real-time application of PRESTo, performed during the period 01–31 July 2019

    Viscoelastic response of contractile filament bundles

    Full text link
    The actin cytoskeleton of adherent tissue cells often condenses into filament bundles contracted by myosin motors, so-called stress fibers, which play a crucial role in the mechanical interaction of cells with their environment. Stress fibers are usually attached to their environment at the endpoints, but possibly also along their whole length. We introduce a theoretical model for such contractile filament bundles which combines passive viscoelasticity with active contractility. The model equations are solved analytically for two different types of boundary conditions. A free boundary corresponds to stress fiber contraction dynamics after laser surgery and results in good agreement with experimental data. Imposing cyclic varying boundary forces allows us to calculate the complex modulus of a single stress fiber.Comment: Revtex with 24 pages, 7 Postscript figures included, accepted for publication in Phys. Rev.

    Time Domain Source Parameter Estimation of Natural and Man-Induced Microearthquakes at the Geysers Geothermal Field

    Get PDF
    Water injection in geothermal areas is the preferential strategy to sustain the natural production of geothermal resources. In this context, monitoring microearthquakes is a fundamental tool to track changes in the reservoirs in terms of soil composition, response to injections, and resource exploitation with space and time. Therefore, refined source characterization is crucial to better estimate the size, source mechanism, and rupture process of microearthquakes, as they are possibly related to industrial activities, and to identify any potential variation in the background seismicity. Standard approaches for source parameter estimation are ordinarily based on the modelling of Fourier displacement spectra and its characteristic parameters: the low-frequency spectral level and corner frequency. Here, we apply an innovative time domain technique that uses the curves of P-wave amplitude vs. time along the seismogram. This methodology allows estimation of seismic moment, source radius, and stress release from the plateau level and the corner time of the average logarithm of P-wave displacement versus time with the assumption of a triangular moment rate function, uniform rupture speed, and a constant/frequency-independent Q-factor. In the current paper, this time domain methodology is implemented on a selected catalog of microearthquakes consisting of 83 events with a moment magnitude ranging between 1.0 and 1.5 that occurred during a 7-year period (2007–2014) of fluid extraction/injection around Prati-9 and Prati-29 wells at The Geysers geothermal field. The results show that the time domain technique provides accurate seismic moment (moment magnitude) and rupture duration/radius estimates of microearthquakes down to the explored limit (M 1) while accounting for the anelastic attenuation effect in the radiated high-frequency wavefield. The retrieved source radius vs. moment scaling is consistent with a self-similar, constant stress drop scaling model, which proves an appropriate attenuation correction and the validity of the assumed, triangular moment rate function for microearthquake ruptures. Two alternative mechanical models are proposed to explain the observed difference (about two orders of magnitude) in the retrieved average stress release estimates between the time and frequency domain methods. We argue that the two quantities may not refer to the same physical quantity representing the stress release of earthquake ruptures. Either the smaller stress release values from the time domain method may indicate a larger fracture area (by a factor of 20) radiating the observed P-waveforms than the one estimated from the corner frequencies, or the frequency domain estimate is a proxy for dynamic stress release while the time domain is more representative of the static release. The latter is associated with a much lower dynamic friction value than static friction value at the fault during the rupture process

    Dynamic Recruitment of Licensing Factor Cdt1 to Sites of DNA Damage

    No full text
    For genomic integrity to be maintained, the cell cycle and DNA damage responses must be linked. Cdt1, a G1-specific cell-cycle factor, is targeted for proteolysis by the Cul4-Ddb1Cdt2 ubiquitin ligase following DNA damage. Using a laser nanosurgery microscope to generate spatially restricted DNA damage within the living cell nucleus, we show that Cdt1 is recruited onto damaged sites in G1 phase cells, within seconds of DNA damage induction. PCNA, Cdt2, Cul4, DDB1 and p21Cip1 also accumulate rapidly to damaged sites. Cdt1 recruitment is PCNA-dependent, whereas PCNA and Cdt2 recruitment are independent of Cdt1. Fitting of fluorescence recovery after photobleaching profiles to an analytic reaction-diffusion model shows that Cdt1 and p21Cip1 exhibit highly dynamic binding at the site of damage, whereas PCNA appears immobile. Cdt2 exhibits both a rapidly exchanging and an apparently immobile subpopulation. Our data suggest that PCNA provides an immobile binding interface for dynamic Cdt1 interactions at the site of damage, which leads to rapid Cdt1 recruitment to damaged DNA, preceding Cdt1 degradation

    Long-wave infrared integrated resonators in the 7.5-9 mu m wavelength range

    Get PDF
    We present broadband on-chip resonators based on SiGe graded-index waveguides operating in the long-wave infrared spectral range from 7.5 to 9.0 mu m wavelength range. A quality factor up to 10(5) has been measured, while an intrinsic quality factor of 1.13 x 10(5) has been extracted from the measurements. Thermal tuning of the phase in the micro-ring has been used to overcome the limitation of the experimental setup in terms of spectral resolution. These results pave the way toward the development of integrated frequency comb operating in the long-wave infrared range

    Demonstration of air-guided quantum cascade lasers without top claddings

    Get PDF
    We report on quantum cascade lasers employing waveguides based on a predominant air confinement mechanism in which the active region is located immediately at the device top surface. The lasers employ ridge-waveguide resonators with narrow lateral electrical contacts only, with a large, central top region not covered by metallization layers. Devices based on this principle have been reported in the past; however, they employed a thick, doped top-cladding layer in order to allow for uniform current injection. We find that the in-plane conductivity of the active region - when the material used is of high quality - provides adequate electrical injection. As a consequence, the devices demonstrated in this work are thinner, and most importantly they can simultaneously support air-guided and surface-plasmon waveguide modes. When the lateral contacts are narrow, the optical mode is mostly located below the air-semiconductor interface. The mode is predominantly air-guided and it leaks from the top surface into the surrounding environment, suggesting that these lasers could be employed for surface-sensing applications. These laser modes are found to operate up to room temperature under pulsed injection, with an emission spectrum centered around λ ≃ 7:66 μm

    Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses

    Get PDF
    The Cooperative Patent Classifications (CPC) jointly developed by the European and US Patent Offices provide a new basis for mapping and portfolio analysis. This update provides an occasion for rethinking the parameter choices. The new maps are significantly different from previous ones, although this may not always be obvious on visual inspection. Since these maps are statistical constructs based on index terms, their quality--as different from utility--can only be controlled discursively. We provide nested maps online and a routine for portfolio overlays and further statistical analysis. We add a new tool for "difference maps" which is illustrated by comparing the portfolios of patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591; http://link.springer.com/article/10.1007/s11192-017-2449-

    The formation of actin waves during regeneration after axonal lesion is enhanced by BDNF

    Get PDF
    During development, axons of neurons in the mammalian central nervous system lose their ability to regenerate. To study the regeneration process, axons of mouse hippocampal neurons were partially damaged by an UVA laser dissector system. The possibility to deliver very low average power to the sample reduced the collateral thermal damage and allowed studying axonal regeneration of mouse neurons during early days in vitro. Force spectroscopy measurements were performed during and after axon ablation with a bead attached to the axonal membrane and held in an optical trap. With this approach, we quantified the adhesion of the axon to the substrate and the viscoelastic properties of the membrane during regeneration. The reorganization and regeneration of the axon was documented by long-term live imaging. Here we demonstrate that BDNF regulates neuronal adhesion and favors the formation of actin waves during regeneration after axonal lesion
    corecore