16 research outputs found

    The viscosity cross-section for elastic electron-xenon collisions including electron spin polarization

    No full text
    The results of the evaluation of the viscosity cross-section for elastic electron-xenon collisions, taking into account the spin-orbit interaction of the continuum electron, in the energy interval from 0.1 eV to 50 eV are presented and discussed. The calculations are performed on the basis of three theoretically derived sets of phase shift data obtained by different authors and on the deduced relativistic expression for the viscosity cross-section in terms of phase shifts discerning the spin-up and spin-down states of the scattered electrons. Comparison with viscosity cross-sections, as evaluated from non-relativistic phase shifts extracted from experiments, strongly favours the relativistic results. The assumption of isotropic scattering is critically examined and the error induced by its use is shown to persist to the same extent as in non-relativistic calculations, at least in the energy region considered

    The viscosity cross-section for elastic electron-xenon collisions including electron spin polarization

    No full text

    Influence of solar X-ray flares on the earth-ionosphere waveguide

    No full text
    A simultaneous analysis of solar are X-ray irradiance and VLF signal amplitude on the GQD/22.1 kHz trace was carried out. Solar are data were taken from GOES 12 satellite listings. The VLF amplitude data were recorded by means of the AbsPAL (Absolute Phase and Amplitude Logger) at the Institute of Physics, Belgrade, Serbia. It was found that solar are events from class C to class X affect the VLF signal amplitude in various ways and can be classified according to the type of effect produced in the Earth-ionosphere waveguide on the VLF propagation

    Advanced fit technique for astrophysical spectra

    No full text
    Aims.The purpose of this paper is to introduce a robust method of data fitting convenient for dealing with astrophysical spectra contaminated by a large fraction of outliers. Methods.We base our approach on the suitable defined measure: the density of the least squares (DLS) that characterizes subsets of the whole data set. The best-fit parameters are obtained by the least-square method on a subset having the maximum value of DLS or, less formally, on the largest subset free of outliers. Results.We give the FORTRAN90 source code of the subroutine that implements the DLS method. The efficiency of the DLS method is demonstrated on a few examples: estimation of continuum in the presence of spectral lines, estimation of spectral line parameters in the presence of outliers, and estimation of the thermodynamic temperature from the spectrum that is rich in spectral lines. Conclusions.Comparison of the present results with the ones obtained with the widely used comprehensive multi-component fit yields agreement within error margins. Due to simplicity and robustness, the proposed approach could be the method of choice whenever outliers are present, or whenever unwelcome features of the spectrum are to be considered as formal outliers (e.g. spectral lines while estimating continuum)

    Classification of X-ray solar flares regarding their effects on the lower ionosphere electron density profile

    No full text
    The classification of X-ray solar flares is performed regarding their effects on the Very Low Frequency (VLF) wave propagation along the Earth-ionosphere waveguide. The changes in propagation are detected from an observed VLF signal phase and amplitude perturbations, taking place during X-ray solar flares. All flare effects chosen for the analysis are recorded by the Absolute Phase and Amplitude Logger (AbsPal), during the summer months of 2004–2007, on the single trace, Skelton (54.72 N, 2.88 W) to Belgrade (44.85 N, 20.38 E) with a distance along the Great Circle Path (GCP) D≈2000 km in length. The observed VLF amplitude and phase perturbations are simulated by the computer program Long-Wavelength Propagation Capability (LWPC), using Wait's model of the lower ionosphere, as determined by two parameters: the sharpness (β in 1/km) and reflection height (H' in km). By varying the values of β and H' so as to match the observed amplitude and phase perturbations, the variation of the D-region electron density height profile Ne(z) was reconstructed, throughout flare duration. The procedure is illustrated as applied to a series of flares, from class C to M5 (5×10−5 W/m2 at 0.1–0.8 nm), each giving rise to a different time development of signal perturbation. The corresponding change in electron density from the unperturbed value at the unperturbed reflection height, i.e. Ne(74 km)=2.16×108 m−3 to the value induced by an M5 class flare, up to Ne(74 km)=4×1010 m−3 is obtained. The β parameter is found to range from 0.30–0.49 1/km and the reflection height H' to vary from 74–63 km. The changes in Ne(z) during the flares, within height range z=60 to 90 km are determined, as well

    Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring

    Get PDF
    Health state transitions are reflected in characteristic changes in the molecular composition of biofluids. Detecting these changes in parallel, across a broad spectrum of molecular species, could contribute to the detection of abnormal physiologies. Fingerprinting of biofluids by infrared vibrational spectroscopy offers that capacity. Whether its potential for health monitoring can indeed be exploited critically depends on how stable infrared molecular fingerprints (IMFs) of individuals prove to be over time. Here we report a proof-of-concept study that addresses this question. Using Fourier-transform infrared spectroscopy, we have fingerprinted blood serum and plasma samples from 31 healthy, non-symptomatic individuals, who were sampled up to 13 times over a period of 7 weeks and again after 6 months. The measurements were performed directly on liquid serum and plasma samples, yielding a time- and cost-effective workflow and a high degree of reproducibility. The resulting IMFs were found to be highly stable over clinically relevant time scales. Single measurements yielded a multiplicity of person-specific spectral markers, allowing individual molecular phenotypes to be detected and followed over time. This previously unknown temporal stability of individual biochemical fingerprints forms the basis for future applications of blood-based infrared spectral fingerprinting as a multiomics-based mode of health monitoring
    corecore