208 research outputs found

    Conversion of hole states by acoustic solitons

    Full text link
    The hole states in the valence band of a large class of semiconductors are degenerate in the projections of angular momentum. Here we show that the switching of a hole between the states can efficiently be realized by acoustic solitons. The microscopic mechanism of such a state conversion is related to the valence band splitting by local elastic strain. The conversion is studied here for heavy holes localized at shallow and deep acceptors in silicon quantum wells.Comment: 4 pages, 2 figure

    Absence of Debye Sheaths Due to Secondary Electron Emission

    Full text link
    A bounded plasma where the electrons impacting the walls produce more than one secondary on average is studied via particle-in-cell simulation. It is found that no classical Debye sheath or space-charge limited sheath exists. Ions are not drawn to the walls and electrons are not repelled. Hence the plasma electrons travel unobstructed to the walls, causing extreme particle and energy fluxes. Each wall has a positive charge, forming a small potential barrier or "inverse sheath" that pulls some secondaries back to the wall to maintain the zero current condition.Comment: 4 pages, 3 Figure

    Magnetooptical Study of Zeeman Effect in Mn modulation-doped InAs/InGaAs/InAlAs Quantum Well Structures

    Get PDF
    We report on a magneto-photoluminescence (PL) study of Mn modulation-doped InAs/InGaAs/InAlAs quantum wells. Two PL lines corresponding to the radiative recombination of photoelectrons with free and bound-on-Mn holes have been observed. In the presence of a magnetic field applied in the Faraday geometry both lines split into two circularly polarized components. While temperature and magnetic field dependences of the splitting are well described by the Brillouin function, providing an evidence for exchange interaction with spin polarized manganese ions, the value of the splitting exceeds the expected value of the giant Zeeman splitting by two orders of magnitude for a given Mn density. Possible reasons of this striking observation are discussed

    Drifts, currents, and power scrape-off width in SOLPS-ITER modeling of DIII-D

    Get PDF
    The effects of drifts and associated flows and currents on the width of the parallel heat flux channel (lambda(q)) in the tokamak scrape-offlayer (SOL) are analyzed using the SOLPS-ITER 2D fluid transport code. Motivation is supplied by Goldston\u27s heuristic drift (HD) model for lambda(q), which yields the same approximately inverse poloidal magnetic field dependence seen in multi-machine regression. The analysis, focusing on a DIII-D H-mode discharge, reveals HD-like features, including comparable density and temperature fall-off lengths in the SOL, and up-down ion pressure asymmetry that allows net cross-separatrix ion magnetic drift flux to exceed net anomalous ion flux. In experimentally relevant high-recycling cases, scans of both toroidal and poloidal magnetic field (B-tor and B-pol) are conducted, showing minimal lambda(q) dependence on either component of the field. Insensitivity to B-tor is expected, and suggests that SOLPS-ITER is effectively capturing some aspects of HD physics. Absence of lambda(q) dependence on B-pol, however, is inconsistent with both the HD model and experimental results. The inconsistency is attributed to strong variation in the parallel Mach number, which violates one of the premises of the HD model. (C) 2016 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore