3,914 research outputs found

    Learning Transferable Architectures for Scalable Image Recognition

    Full text link
    Developing neural network image classification models often requires significant architecture engineering. In this paper, we study a method to learn the model architectures directly on the dataset of interest. As this approach is expensive when the dataset is large, we propose to search for an architectural building block on a small dataset and then transfer the block to a larger dataset. The key contribution of this work is the design of a new search space (the "NASNet search space") which enables transferability. In our experiments, we search for the best convolutional layer (or "cell") on the CIFAR-10 dataset and then apply this cell to the ImageNet dataset by stacking together more copies of this cell, each with their own parameters to design a convolutional architecture, named "NASNet architecture". We also introduce a new regularization technique called ScheduledDropPath that significantly improves generalization in the NASNet models. On CIFAR-10 itself, NASNet achieves 2.4% error rate, which is state-of-the-art. On ImageNet, NASNet achieves, among the published works, state-of-the-art accuracy of 82.7% top-1 and 96.2% top-5 on ImageNet. Our model is 1.2% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS - a reduction of 28% in computational demand from the previous state-of-the-art model. When evaluated at different levels of computational cost, accuracies of NASNets exceed those of the state-of-the-art human-designed models. For instance, a small version of NASNet also achieves 74% top-1 accuracy, which is 3.1% better than equivalently-sized, state-of-the-art models for mobile platforms. Finally, the learned features by NASNet used with the Faster-RCNN framework surpass state-of-the-art by 4.0% achieving 43.1% mAP on the COCO dataset

    Constraining the equation of state of supra-nuclear dense matter from XMM-Newton observations of neutron stars in globular clusters

    Full text link
    We report on the detailed modelling of the X-ray spectra of three likely neutron stars. The neutron stars, observed with XMM-Newton are found in three quiescent X-ray binaries in the globular clusters: omega Cen, M 13 and NGC 2808. Whether they are accreting at very low rates or radiating energy from an accretion heated core, their X-ray spectra are expected to be those of a hydrogen atmosphere. We use and compare publicly available hydrogen atmosphere models, with constant and varying surface gravities to constrain the masses and radii of the neutron stars. Thanks to the high XMM-Newton throughput, and the accurate distances available for these clusters, using the latest science analysis software release and calibration of the XMM-Newton EPIC cameras, we derive the most stringent constraints on the masses and radii of the neutron stars obtained to date from these systems. A comparison of the models indicate that previously used hydrogen atmosphere models (assuming constant surface gravity) tend to underestimate the mass and overestimate the radius of neutron stars. Our data constrain the allowed equations of state to those which concern normal nucleonic matter and one possible strange quark matter model, thus constraining radii to be from 8 km and masses up to 2.4 M⊙_\odot.Comment: 10 pages, 8 figures, accepted to be published in The Astrophysical Journa

    Hard X-ray Bursts Recorded by the IBIS Telescope of the INTEGRAL Observatory in 2003-2009

    Full text link
    To find X-ray bursts from sources within the field of view of the IBIS/INTEGRAL telescope, we have analysed all the archival data of the telescope available at the time of writing the paper (the observations from January 2003 to April 2009). We have detected 834 hard (15-25 keV) X-ray bursts, 239 of which were simultaneously recorded by the JEM-X/INTEGRAL telescope in the standard X-ray energy range. More than 70% of all bursts (587 events) have been recorded from the well-known X-ray burster GX 354-0. We have found upper limits on the distances to their sources by assuming that the Eddington luminosity limit was reached at the brightness maximum of the brightest bursts.Comment: 18 pages, 2 figures, 2 table

    INTEGRAL observations of the Be/X-ray binary EXO 2030+375 during outburst

    Full text link
    We present a type-I outburst of the high-mass X-ray binary EXO 2030+375, detected during INTEGRAL's Performance and Verification Phase in December 2002 (on-source time about 10e+06 seconds). In addition, six more outbursts have been observed during INTEGRAL's Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798+-0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7*10e+36 erg/s, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT_bb~8 keV) with either a power law model with Gamma=2.04+-0.11 keV or a Comptonized component (spherical geometry, kT_e=30 keV, tau=2.64, kT_W=1.5 keV).Comment: 10 pages, 11 figures, to be published in A&

    Update on the ICUD-SIU consultation on multi-parametric magnetic resonance imaging in localised prostate cancer

    Get PDF
    Introduction: Prostate cancer (PCa) imaging is a rapidly evolving field. Dramatic improvements in prostate MRI during the last decade will probably change the accuracy of diagnosis. This chapter reviews recent current evidence about MRI diagnostic performance and impact on PCa management. Materials and methods: The International Consultation on Urological Diseases nominated a committee to review the literature on prostate MRI. A search of the PubMed database was conducted to identify articles focussed on MP-MRI detection and staging protocols, reporting and scoring systems, the role of MP-MRI in diagnosing PCa prior to biopsy, in active surveillance, in focal therapy and in detecting local recurrence after treatment. Results: Differences in opinion were reported in the use of the strength of magnets [1.5 Tesla (T) vs. 3T] and coils. More agreement was found regarding the choice of pulse sequences; diffusion-weighted MRI (DW-MRI), dynamic contrast-enhanced MRI (DCE MRI), and/or MR spectroscopy imaging (MRSI) are recommended in addition to conventional T2-weighted anatomical sequences. In 2015, the Prostate Imaging Reporting and Data System (PI-RADS version 2) was described to standardize image acquisition and interpretation. MP-MRI improves detection of clinically significant PCa (csPCa) in the repeat biopsy setting or before the confirmatory biopsy in patients considering active surveillance. It is useful to guide focal treatment and to detect local recurrences after treatment. Its role in biopsy-naive patients or during the course of active surveillance remains debated. Conclusion: MP-MRI is increasingly used to improve detection of csPCa and for the selection of a suitable therapeutic approach

    Evolution of AQL X-1 During the Rising Phase of its 1998 Outburst

    Get PDF
    We present results from 16 snapshots of Aql X-1 with RXTE during the rising phase of its recent outburst. The observations were carried out at a typical rate of once or twice per day. The source shows interesting spectral evolution during this period. Phenomenologically, it bears remarkable similarities to ``atoll'' sources. Shortly after the onset of the outburst, the source is seen to be in an ``island'' state, but with little X-ray variability. It then appears to have made a rapid spectral transition (on a time scale less than half a day) to another ``island'' state, where it evolves slightly and stays for 4 days. In this state, the observed X-ray flux becomes increasingly variable as the source brightens. Quasi-period oscillation (QPO) in the X-ray intensity is detected in the frequency range 670--870 Hz. The QPO frequency increases with the X-ray flux while its fractional rms decreases. The QPO becomes undetectable following a transition to a ``banana'' state, where the source continues its evolution by moving up and down the ``banana'' branch in the color-color diagram as the flux (presumably, the mass accretion rate) fluctuates around the peak of the outburst. Throughout the entire period, the power density spectrum is dominated by very-low frequency noises. Little power can be seen above ~1 Hz, which is different from typical ``atoll'' sources. In the ``banana'' state, the overall X-ray variability remains low (with fractional rms ~3--4%) but roughly constant. The observed X-ray spectrum is soft with few photons from above ∌\sim25 keV, implying the thermal origin of the emission. The evolution of both spectral and temporal X-ray properties is discussed in the context of disk-instability models.Comment: 13 pages, including one table and five figures. To appear in ApJ Letters (July 20

    Spectral Changes in the Hyperluminous Pulsar in NGC 5907 as a Function of Super-Orbital Phase

    Get PDF
    We present broad-band, multi-epoch X-ray spectroscopy of the pulsating ultra-luminous X-ray source (ULX) in NGC 5907. Simultaneous XMM-Newton and NuSTAR data from 2014 are best described by a multi-color black-body model with a temperature gradient as a function of accretion disk radius significantly flatter than expected for a standard thin accretion disk (T(r) ~ r^{-p}, with p=0.608^{+0.014}_{-0.012}). Additionally, we detect a hard power-law tail at energies above 10 keV, which we interpret as being due to Comptonization. We compare this observation to archival XMM-Newton, Chandra, and NuSTAR data from 2003, 2012, and 2013, and investigate possible spectral changes as a function of phase over the 78d super-orbital period of this source. We find that observations taken around phases 0.3-0.4 show very similar temperature profiles, even though the observed flux varies significantly, while one observation taken around phase 0 has a significantly steeper profile. We discuss these findings in light of the recent discovery that the compact object is a neutron star and show that precession of the accretion disk or the neutron star can self-consistently explain most observed phenomena.Comment: 7 pages, 5 figures, submitted to ApJ; comments welcom

    RXTE Studies of X-ray Spectral Variations with Accretion Rate in 4U 1915-05

    Full text link
    We present the results of detailed spectral studies of the ultra-compact low mass X-ray binary (LMXB) 4U 1915-05 carried out with the Rossi X-ray Timing Explorer (RXTE) during 1996. 4U 1915-05 is an X-ray burster (XRB) known to exhibit a ~199-day modulation in its 2--12 keV flux. Observations were performed with the PCA and HEXTE instruments on RXTE at roughly one-month intervals to sample this long-term period and study accretion rate-related spectral changes. We obtain good fits with a model consisting of a blackbody and an exponentially cut-off power law. The spectral parameters are strongly correlated with both the broad-band (2--50 keV) luminosity and the position in the color-color diagram, with the source moving from a low hard state to a high soft state as the accretion rate increases. The blackbody component appears to drive the spectral evolution. Our results are consistent with a geometry in which the soft component arises from an optically thick boundary layer and the hard component from an extended Comptonizing corona. Comparing our results with those of a similar study of the brighter source 4U 1820-30 (Bloser et al. 2000), we find that the two ultra-compact LMXBs occupy similar spectral states even though the transitions occur at very different total luminosities.Comment: 27 pages LaTeX, 8 figures, accepted to the Astrophysical Journa
    • 

    corecore