121 research outputs found

    Magnetic versus nonmagnetic doping effects on the magnetic ordering in the Haldane chain compound PbNi2V2O8

    Full text link
    A study of an impurity driven phase-transition into a magnetically ordered state in the spin-liquid Haldane chain compound PbNi2V2O8 is presented. Both, macroscopic magnetization as well as 51V nuclear magnetic resonance (NMR) measurements reveal that the spin nature of dopants has a crucial role in determining the stability of the induced long-range magnetic order. In the case of nonmagnetic (Mg2+) doping on Ni2+ spin sites (S=1) a metamagnetic transition is observed in relatively low magnetic fields. On the other hand, the magnetic order in magnetically (Co2+) doped compounds survives at much higher magnetic fields and temperatures, which is attributed to a significant anisotropic impurity-host magnetic interaction. The NMR measurements confirm the predicted staggered nature of impurity-liberated spin degrees of freedom, which are responsible for the magnetic ordering. In addition, differences in the broadening of the NMR spectra and the increase of nuclear spin-lattice relaxation in doped samples, indicate a diverse nature of electron spin correlations in magnetically and nonmagnetically doped samples, which begin developing at rather high temperatures with respect to the antiferromagnetic phase transition.Comment: 10 pages, 7 figure

    Chlorination of Substituted 2-Pyridones with Nitryl Chloride

    Get PDF
    Nitryl chloride (N02Cl) was used for the first time as a chlorinating agent in the 2-pyridone series. Substituted 2-pyridones were treated with nitryl chloride 1n benzene. 5-Chloro and 3,5- -dichloro derivatives were obtained in good yields. Formation of nitro comp.ounds was not observed

    Chlorination of Substituted 2-Pyridones with Nitryl Chloride

    Get PDF
    Nitryl chloride (N02Cl) was used for the first time as a chlorinating agent in the 2-pyridone series. Substituted 2-pyridones were treated with nitryl chloride 1n benzene. 5-Chloro and 3,5- -dichloro derivatives were obtained in good yields. Formation of nitro comp.ounds was not observed

    Origin of magnetic moments in carbon nanofoam

    Get PDF
    A range of carbon nanofoam samples was prepared by using a high-repetition-rate laser ablation technique under various Ar pressures. Their magnetic properties were systematically investigated by dc magnetization measurements and continuous wave (cw) as well as pulsed EPR techniques. In all samples we found very large zero-field cooled-field-cooled thermal hysteresis in the susceptibility measurements extending up to room temperature. Zero-field cooled (ZFC) susceptibility measurements also display very complex behavior with a susceptibility maximum that strongly varies in temperature from sample to sample. Low-temperature magnetization curves indicate a saturation magnetization MS ≈0.35 emu g at 2 K and can be well fitted with a classical Langevin function. MS is more than an order of magnitude larger than any possible iron impurity, proving that the observed magnetic phenomena are an intrinsic effect of the carbon nanofoam. Magnetization measurements are consistent with a spin-glass type ground state. The cusps in the ZFC susceptibility curves imply spin freezing temperatures that range from 50 K to the extremely high value of >300 K. Further EPR measurements revealed three different centers that coexist in all samples, distinguished on the basis of g -factor and relaxation time. Their possible origin and the role in the magnetic phenomena are discussed

    Signature of a randomness-driven spin-liquid state in a frustrated magnet

    Full text link
    Collective behaviour of electrons, frustration induced quantum fluctuations and entanglement in quantum materials underlie some of the emergent quantum phenomena with exotic quasi-particle excitations that are highly relevant for technological applications. Herein, we present our thermodynamic and muon spin relaxation measurements, complemented by ab initio density functional theory and exact diagonalization results, on the recently synthesized frustrated antiferromagnet Li4CuTeO6, in which Cu2+ ions (S = 1/2) constitute disordered spin chains and ladders along the crystallographic [101] direction with weak random inter-chain couplings. Our thermodynamic experiments detect neither long-range magnetic ordering nor spin freezing down to 45 mK despite the presence of strong antiferromagnetic interaction between Cu2+ moments leading to a large effective Curie-Weiss temperature of -154 K. Muon spin relaxation results are consistent with thermodynamic results. The temperature and magnetic field scaling of magnetization and specific heat reveal a data collapse pointing towards the presence of random-singlets within a disorder-driven correlated and dynamic ground-state in this frustrated antiferromagnet

    Electronic properties of LaOFFeAs in the normal state probed by NMR/NQR

    Full text link
    We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spectra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.Comment: 17 pages, 6 figure

    Origin of magnetic moments in carbon nanofoam

    Get PDF
    A range of carbon nanofoam samples was prepared by using a high-repetition-rate laser ablation technique under various Ar pressures. Their magnetic properties were systematically investigated by dc magnetization measurements and continuous wave (cw) as well as pulsed EPR techniques. In all samples we found very large zero-field cooled-field-cooled thermal hysteresis in the susceptibility measurements extending up to room temperature. Zero-field cooled (ZFC) susceptibility measurements also display very complex behavior with a susceptibility maximum that strongly varies in temperature from sample to sample. Low-temperature magnetization curves indicate a saturation magnetization MS ≈0.35 emu g at 2 K and can be well fitted with a classical Langevin function. MS is more than an order of magnitude larger than any possible iron impurity, proving that the observed magnetic phenomena are an intrinsic effect of the carbon nanofoam. Magnetization measurements are consistent with a spin-glass type ground state. The cusps in the ZFC susceptibility curves imply spin freezing temperatures that range from 50 K to the extremely high value of >300 K. Further EPR measurements revealed three different centers that coexist in all samples, distinguished on the basis of g -factor and relaxation time. Their possible origin and the role in the magnetic phenomena are discussed

    Informed design of educational technology for teaching and learning? Towards an evidence-informed model of good practice

    Get PDF
    The aim of this paper is to model evidence-informed design based on a selective critical analysis of research articles. We draw upon findings from an investigation into practitioners’ use of educational technologies to synthesise and model what informs their designs. We found that practitioners’ designs were often driven by implicit assumptions about learning. These shaped both the design of interventions and the methods sought to derive evaluations and interpret the findings. We argue that interventions need to be grounded in better and explicit conceptualisations of what constitutes learning in order to have well-informed designs that focus on improving the quality of student learning

    Antisymmetric Magnetic Interactions in Oxo-Bridged Copper(II) Bimetallic Systems

    Get PDF
    The antisymmetric magnetic interaction is studied using correlated wave-function-based calculations in oxo-bridged copper bimetallic complexes. All of the anisotropic multispin Hamiltonian parameters are extracted using spin-orbit state interaction and effective Hamiltonian theory. It is shown that the methodology is accurate enough to calculate the antisymmetric terms, while the small symmetric anisotropic interactions require more sophisticated calculations. The origin of the antisymmetric anisotropy is analyzed, and the effect of geometrical deformations is addressed.

    Nanoparticles for Applications in Cellular Imaging

    Get PDF
    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis
    corecore