22 research outputs found

    Inhomogeneous Structures in Holographic Superfluids: II. Vortices

    Full text link
    We study vortex solutions in a holographic model of Herzog, Hartnoll, and Horowitz, with a vanishing external magnetic field on the boundary, as is appropriate for vortices in a superfluid. We study relevant length scales related to the vortices and how the charge density inside the core of the vortex behaves as a function of temperature or chemical potential. We extract the critical superfluid velocity from the vortex solutions, study how it behaves as a function of the temperature, and compare it to earlier studies and to the Landau criterion. We also comment on the possibility of a Berezinskii-Kosterlitz-Thouless vortex confinement-deconfinement transition.Comment: 32 pages, 10 figures, typos corrected, references adde

    Dark solitons in holographic superfluids

    Get PDF
    5 pages, Revtex, 5 figures, some typos corrected. Reference addedWe construct dark soliton solutions in a holographic model of a relativistic superfluid. We study the length scales associated with the condensate and the charge density depletion, and find that the two scales differ by a non-trivial function of the chemical potential. By adjusting the chemical potential, we study the variation of the depletion of charge density at the interface.Peer reviewe

    D-Brane Propagation in Two-Dimensional Black Hole Geometries

    Full text link
    We study propagation of D0-brane in two-dimensional Lorentzian black hole backgrounds by the method of boundary conformal field theory of SL(2,R)/U(1) supercoset at level k. Typically, such backgrounds arise as near-horizon geometries of k coincident non-extremal NS5-branes, where 1/k measures curvature of the backgrounds in string unit and hence size of string worldsheet effects. At classical level, string worldsheet effects are suppressed and D0-brane propagation in the Lorentzian black hole geometry is simply given by the Wick rotation of D1-brane contour in the Euclidean black hole geometry. Taking account of string worldsheet effects, boundary state of the Lorentzian D0-brane is formally constructible via Wick rotation from that of the Euclidean D1-brane. However, the construction is subject to ambiguities in boundary conditions. We propose exact boundary states describing the D0-brane, and clarify physical interpretations of various boundary states constructed from different boundary conditions. As it falls into the black hole, the D0-brane radiates off to the horizon and to the infinity. From the boundary states constructed, we compute physical observables of such radiative process. We find that part of the radiation to infinity is in effective thermal distribution at the Hawking temperature. We also find that part of the radiation to horizon is in the Hagedorn distribution, dominated by massive, highly non-relativistic closed string states, much like the tachyon matter. Remarkably, such distribution emerges only after string worldsheet effects are taken exactly into account. From these results, we observe that nature of the radiation distribution changes dramatically across the conifold geometry k=1 (k=3 for the bosonic case), exposing the `string - black hole transition' therein.Comment: 51 pages, 5 figures, v2: referece added, note added replying the comment made in hep-th/060206

    Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma

    Get PDF
    Background: tumor-infiltrating lymphocytes are prognostic in many human cancers. However, the prognostic value of lymphocytes infiltrating glioblastoma (GBM), and roles in tumor control or progression are unclear. We hypothesized that B and T cell density, and markers of their activity, proliferation, differentiation, or function, would have favorable prognostic significance for patients with GBM. Methods: initial resection specimens from 77 patients with IDH1/2 wild type GBM who received standard-of-care treatment were evaluated with multiplex immunofluorescence histology (mIFH), for the distribution, density, differentiation, and proliferation of T cells and B cells, as well as for the presence of tertiary lymphoid structures (TLS), and IFNγ expression. Immune infiltrates were evaluated for associations with overall survival (OS) by univariate and multivariate Cox proportional hazards modeling. Results: in univariate analyses, improved OS was associated with high densities of proliferating (Ki67(+)) CD8(+) cells (HR 0.36, p = 0.001) and CD20(+) cells (HR 0.51, p = 0.008), as well as CD8(+)Tbet(+) cells (HR 0.46, p = 0.004), and RORγt(+) cells (HR 0.56, p = 0.04). Conversely, IFNγ intensity was associated with diminished OS (HR 0.59, p = 0.036). In multivariable analyses, adjusting for clinical variables, including age, resection extent, Karnofsky Performance Status (KPS), and MGMT methylation status, improved OS was associated with high densities of proliferating (Ki67(+)) CD8(+) cells (HR 0.15, p < 0.001), and higher ratios of CD8(+) cells to CD4(+) cells (HR 0.31, p = 0.005). Diminished OS was associated with increases in patient age (HR 1.21, p = 0.005) and higher mean intensities of IFNγ (HR 2.13, p = 0.027). Conclusions: intratumoral densities of proliferating CD8 T cells and higher CD8/CD4 ratios are independent predictors of OS in patients with GBM. Paradoxically, higher mean intensities of IFNγ in the tumors were associated with shorter OS. These findings suggest that survival may be enhanced by increasing proliferation of tumor-reactive CD8(+) T cells and that approaches may be needed to promote CD8(+) T cell dominance in GBM, and to interfere with the immunoregulatory effects of IFNγ in the tumor microenvironment

    Intravenous fluid restriction after major abdominal surgery: a randomized blinded clinical trial

    Get PDF
    Background: Intravenous (IV) fluid administration is an essential part of postoperative care. Some studies suggest that a restricted post-operative fluid regime reduces complications and postoperative hospital stay after surgery. We investigated the effects of postoperative fluid restriction in surgical patients undergoing major abdominal surgery. Methods: In a blinded randomized trial, 62 patients (ASA I-III) undergoing elective major abdominal surgical procedures in a university hospital were allocated either to a restricted (1.5 L/24 h) or a standard postoperative IV fluid regime (2.5 L/24 h). Primary endpoint was length of postoperative hospital stay (PHS). Secondary endpoints included postoperative complications and time to restore gastric functions. Results: After a 1-year inclusion period, an unplanned interim analysis was made because of many protocol violations due to patient deterioration. In the group with the restricted regime we found a significantly increased PHS (12.3 vs. 8.3 days; p = 0.049) and significantly more major complications: 12 in 30 (40%) vs. 5 in 32 (16%) patients (Absolute Risk Increase: 0.24 [95%CI: 0.03 to 0.46], i.e. a number needed to harm of 4 [95%CI: 2-33]). Therefore, the trial was stopped prematurely. Intention to treat analysis showed no differences in time to restore gastric functions between the groups. Conclusion: Restricted postoperative IV fluid management, as performed in this trial, in patients undergoing major abdominal surgery appears harmful as it is accompanied by an increased risk of major postoperative complications and a prolonged postoperative hospital stay

    Surface Area and Pore Structure of Hardened Portland Cement/Silica Fume Pastes Containing a Superplasticizer

    No full text
    Surface characteristics such as specific surface area, total pore volume, hydraulic pore radius and pore size distribution have been evaluated for hardened Portland cement/silica fume pastes containing different amounts of BVF superplasticizer (naphthalene sulphonate addicrete). The derived parameters indicate that the surface properties were greatly affected by the amount of superplasticizer employed. The pozzolanic reaction between silica fume and the free lime released during the hydration of Portland cement, as well as the production of a more dense structure produced by the addition of BVF superplasticizer accompanied by decreasing initial water/solid ratios, resulted in hardened cement pastes with a close-textured structure and the predominance of micropores and/or mesopores with a limited size. Such a structure produced dense pastes with improved mechanical properties
    corecore