34 research outputs found

    The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induces fibrosis

    Full text link
    Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2) is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages

    Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity

    Get PDF
    In recent years, there has been accumulating evidence that microRNAs are key regulator molecules of gene expression. The cellular processes that are regulated by microRNAs include e.g. cell proliferation, programmed cell death and cell differentiation. Adipocyte differentiation is a highly regulated cellular process for which several important regulating factors have been discovered, but still not all are known to fully understand the underlying mechanisms. In the present study, we analyzed the expression of 597 microRNAs during the differentiation of mouse mesenchymal stem cells into terminally differentiated adipocytes by real-time RT-PCR. In total, 66 miRNAs were differentially expressed in mesenchymal stem cell-derived adipocytes compared to the undifferentiated progenitor cells. To further study the regulation of these 66 miRNAs in white adipose tissue in vivo and their dependence on PPARγ activity, mouse models of genetically or diet induced obesity as well as a mouse line expressing a dominant negative PPARγ mutant were employed

    FHL2 interacts with CALM and is highly expressed in acute erythroid leukemia

    Get PDF
    The t(10;11)(p13;q14) translocation results in the fusion of the CALM (clathrin assembly lymphoid myeloid leukemia protein) and AF10 genes. This translocation is observed in acute myeloblastic leukemia (AML M6), acute lymphoblastic leukemia (ALL) and malignant lymphoma. Using a yeast two-hybrid screen, the four and a half LIM domain protein 2 (FHL2) was identified as a CALM interacting protein. Recently, high expression of FHL2 in breast, gastric, colon, lung as well as in prostate cancer was shown to be associated with an adverse prognosis. The interaction between CALM and FHL2 was confirmed by glutathione S-transferase-pulldown assay and co-immunoprecipitation experiments. The FHL2 interaction domain of CALM was mapped to amino acids 294–335 of CALM. The transcriptional activation capacity of FHL2 was reduced by CALM, but not by CALM/AF10, which suggests that regulation of FHL2 by CALM might be disturbed in CALM/AF10-positive leukemia. Extremely high expression of FHL2 was seen in acute erythroid leukemia (AML M6). FHL2 was also highly expressed in chronic myeloid leukemia and in AML with complex aberrant karyotype. These results suggest that FHL2 may play an important role in leukemogenesis, especially in the case of AML M6

    Integrin α6Bβ4 inhibits colon cancer cell proliferation and c-Myc activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Integrins are known to be important contributors to cancer progression. We have previously shown that the integrin β4 subunit is up-regulated in primary colon cancer. Its partner, the integrin α6 subunit, exists as two different mRNA splice variants, α6A and α6B, that differ in their cytoplasmic domains but evidence for distinct biological functions of these α6 splice variants is still lacking.</p> <p>Methods</p> <p>In this work, we first analyzed the expression of integrin α6A and α6B at the protein and transcript levels in normal human colonic cells as well as colorectal adenocarcinoma cells from both primary tumors and established cell lines. Then, using forced expression experiments, we investigated the effect of α6A and α6B on the regulation of cell proliferation in a colon cancer cell line.</p> <p>Results</p> <p>Using variant-specific antibodies, we observed that α6A and α6B are differentially expressed both within the normal adult colonic epithelium and between normal and diseased colonic tissues. Proliferative cells located in the lower half of the glands were found to predominantly express α6A, while the differentiated and quiescent colonocytes in the upper half of the glands and surface epithelium expressed α6B. A relative decrease of α6B expression was also identified in primary colon tumors and adenocarcinoma cell lines suggesting that the α6A/α6B ratios may be linked to the proliferative status of colonic cells. Additional studies in colon cancer cells showed that experimentally restoring the α6A/α6B balance in favor of α6B caused a decrease in cellular S-phase entry and repressed the activity of c-Myc.</p> <p>Conclusion</p> <p>The findings that the α6Bβ4 integrin is expressed in quiescent normal colonic cells and is significantly down-regulated in colon cancer cells relative to its α6Aβ4 counterpart are consistent with the anti-proliferative influence and inhibitory effect on c-Myc activity identified for this α6Bβ4 integrin. Taken together, these findings point out the importance of integrin variant expression in colon cancer cell biology.</p

    A-RAF Kinase Functions in ARF6 Regulated Endocytic Membrane Traffic

    Get PDF
    BACKGROUND: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149) that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking

    Novel anti-inflammatory properties of the LIM-only protein Fhl2

    No full text

    Identification of novel interaction partners for the conserved membrane proximal region of alpha-integrin cytoplasmic domains

    Get PDF
    The alpha3Abeta1 integrin is a laminin receptor with a broad specificity for different laminin isoforms. Furthermore, it regulates the function of other integrins, like alpha2beta1, alpha5beta1 and alpha6Abeta1. In a yeast two hybrid screen of a human placenta cDNA library, we identified cDNAs coding for four different proteins that strongly interact with the conserved region of the cytoplasmic domain of the alpha3A integrin subunit. In addition to the cDNA for nucleotide exchange factor Mss4 and the putative tumour suppressor protein BIN1, two novel cDNAs were identified. Association analysis with different integrin subunits revealed them as cDNAs that encode binding proteins which react with a broad spectrum of alpha subunits. The conserved membrane proximal region of the alpha3A chain was identified as the binding site for all four proteins. They, therefore, may be involved in the regulation of general functions of integrins
    corecore