174 research outputs found

    Microstructure from ferroelastic transitions using strain pseudospin clock models in two and three dimensions: a local mean-field analysis

    Get PDF
    We show how microstructure can arise in first-order ferroelastic structural transitions, in two and three spatial dimensions, through a local meanfield approximation of their pseudospin hamiltonians, that include anisotropic elastic interactions. Such transitions have symmetry-selected physical strains as their NOPN_{OP}-component order parameters, with Landau free energies that have a single zero-strain 'austenite' minimum at high temperatures, and spontaneous-strain 'martensite' minima of NVN_V structural variants at low temperatures. In a reduced description, the strains at Landau minima induce temperature-dependent, clock-like ZNV+1\mathbb{Z}_{N_V +1} hamiltonians, with NOPN_{OP}-component strain-pseudospin vectors S⃗{\vec S} pointing to NV+1N_V + 1 discrete values (including zero). We study elastic texturing in five such first-order structural transitions through a local meanfield approximation of their pseudospin hamiltonians, that include the powerlaw interactions. As a prototype, we consider the two-variant square/rectangle transition, with a one-component, pseudospin taking NV+1=3N_V +1 =3 values of S=0,±1S= 0, \pm 1, as in a generalized Blume-Capel model. We then consider transitions with two-component (NOP=2N_{OP} = 2) pseudospins: the equilateral to centred-rectangle (NV=3N_V =3); the square to oblique polygon (NV=4N_V =4); the triangle to oblique (NV=6N_V =6) transitions; and finally the 3D cubic to tetragonal transition (NV=3 N_V =3). The local meanfield solutions in 2D and 3D yield oriented domain-walls patterns as from continuous-variable strain dynamics, showing the discrete-variable models capture the essential ferroelastic texturings. Other related hamiltonians illustrate that structural-transitions in materials science can be the source of interesting spin models in statistical mechanics.Comment: 15 pages, 9 figure

    Programming Robots With Events

    Get PDF
    International audienceWe introduce how to use event-based style to program robots through the INI programming language. INI features both built-in and user-defined events, a mechanism to handle various kinds of changes happening in the environment. Event handlers run in parallel either synchronously or asynchronously, and events can be reconfigured at runtime to modify their behavior when needed. We apply INI to the humanoid robot called Nao, for which we develop an object tracking program

    Superparaelectric phase in the ensemble of non-interacting ferroelectric nanoparticles

    Full text link
    For the first time we predict the conditions of superparaelectric phase appearance in the ensemble of non-interacting spherical ferroelectric nanoparticles. The superparaelectricity in nanoparticle was defined by analogy with superparamagnetism, obtained earlier in small nanoparticles made of paramagnetic material. Calculations of correlation radius, energetic barriers of polarization reorientation and polarization response to external electric field, were performed within Landau-Ginzburg phenomenological approach for perovskites Pb(Zr,Ti)O3, BiFeO3 and uniaxial ferroelectrics rochelle salt and triglycine sulfate.Comment: 28 pages, 7 figures, 3 Appendices, to be submitted to Phys. Rev.

    Low Temperature Measurements by Infrared Spectroscopy in CoFe2_2O4_4 Ceramic

    Get PDF
    In this paper results of new far-infrared and middle-infrared measurements (wavenumber range of 4000cm-1 - 100cm-1) in the range of the temperature from 300K to 8K of the CoFe2O4 ceramic are presented. The bands positions and their shapes are the same in the wide temperature range. The quality of the sample was investigated by X-ray, EDS and EPMA studies. The CoFe2O4 reveals the cubic structure (Fd-3m) in the temperature range from 85K to 360 K without any traces of distortion. On the current level of knowledge the polycrystalline CoFe2O4 does not exhibit phase transition in the temperature range from 8 K to 300 K.Comment: 10 pages, 6 figure

    Magnetoelectric effect in mixed valency oxides mediated by charge carriers

    Full text link
    We show that the presence of free carriers in a substance can generate the multiferroic behavior. Namely, if the substance has mixed-valence ions, which can supply free carriers and have electric dipole and spin moments, all three types of long-range order (ferromagnetic, ferroelectric and magnetoelectric (ME)) can occur at low temperature. The physical origin of the effect is that charge carriers can mediate the multiferroic behavior via spin - spin (RKKY), dipole-dipole and dipole - spin interactions. Our estimate of the interaction magnitude shows that there exist an optimal carrier concentration, at which the strength of ME interaction is maximal and comparable to that of spin-spin RKKY interaction. This permits to conclude that in substances, where RKKY interaction between local spins is not small, a substantial value of free carriers mediated ME interaction can occur. Our analysis shows that disorder in the above substances does not suppress multiferroic effects.Comment: 4 pages, 1 figur

    Scaled free energies, power-law potentials, strain pseudospins and quasi-universality for first-order structural transitions

    Get PDF
    We consider ferroelastic first-order phase transitions with NOPN_{OP} order-parameter strains entering Landau free energies as invariant polynomials, that have NVN_V structural-variant Landau minima. The total free energy includes (seemingly innocuous) harmonic terms, in the n=6−NOPn = 6 -N_{OP} {\it non}-order-parameter strains. Four 3D transitions are considered, tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal and cubic/orthorhombic unit-cell distortions, with respectively, NOP=1,2,3N_{OP} = 1, 2, 3 and 2; and NV=2,3,4N_V = 2, 3, 4 and 6. Five 2D transitions are also considered, as simpler examples. Following Barsch and Krumhansl, we scale the free energy to absorb most material-dependent elastic coefficients into an overall prefactor, by scaling in an overall elastic energy density; a dimensionless temperature variable; and the spontaneous-strain magnitude at transition λ<<1\lambda <<1. To leading order in λ\lambda the scaled Landau minima become material-independent, in a kind of 'quasi-universality'. The scaled minima in NOPN_{OP}-dimensional order-parameter space, fall at the centre and at the NVN_V corners, of a transition-specific polyhedron inscribed in a sphere, whose radius is unity at transition. The `polyhedra' for the four 3D transitions are respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the nn terms harmonic in the non-order-parameter strains, by substituting solutions of the 'no dislocation' St Venant compatibility constraints, and explicitly obtain powerlaw anisotropic, order-parameter interactions, for all transitions. In a reduced discrete-variable description, the competing minima of the Landau free energies induce unit-magnitude pseudospin vectors, with NV+1N_V +1 values, pointing to the polyhedra corners and the (zero-value) center.Comment: submitted to PR

    Rotation Symmetry Spontaneous Breaking of Edge States in Zigzag Carbon Nanotubes

    Full text link
    Analytical solutions of the edge states were obtained for the (N, 0) type carbon nanotubes with distorted ending bonds. It was found that the edge states are mixed via the distortion. The total energies for N=5 and N>=7 are lower in the asymmetric configurations of ending bonds than those having axial rotation symmetry. Thereby the symmetry is breaking spontaneously. The results imply that the symmetry of electronic states at the apex depends on the occupation; the electron density pattern at the apex could change dramatically and could be controlled by applying an external field.Comment: 19 pages, 3 figure

    Loss of estrogen receptor β decreases mitochondrial energetic potential and increases thrombogenicity of platelets in aged female mice

    Get PDF
    Platelets derived from aged (reproductively senescent) female mice with genetic deletion of estrogen receptor beta (βER) are more thrombogenic than those from age-matched wild-type (WT) mice. Intracellular processes contributing to this increased thrombogenicity are not known. Experiments were designed to identify subcellular localization of estrogen receptors and evaluate both glycolytic and mitochondrial energetic processes which might affect platelet activation. Platelets and blood from aged (22–24 months) WT and estrogen receptor β knockout (βERKO) female mice were used in this study. Body, spleen weight, and serum concentrations of follicle-stimulating hormone and 17β-estradiol were comparable between WT and βERKO mice. Number of spontaneous deaths was greater in the βERKO colony (50% compared to 30% in WT) over the course of 24 months. In resting (nonactivated) platelets, estrogen receptors did not appear to colocalize with mitochondria by immunostaining. Lactate production and mitochondrial membrane potential of intact platelets were similar in both groups of mice. However, activities of NADH dehydrogenase, cytochrome bc1 complex, and cytochrome c oxidase of the electron transport chain were reduced in mitochondria isolated from platelets from βERKO compared to WT mice. There were a significantly higher number of phosphatidylserine-expressing platelet-derived microvesicles in the plasma and a greater thrombin-generating capacity in βERKO compared to WT mice. These results suggest that deficiencies in βER affect energy metabolism of platelets resulting in greater production of circulating thrombogenic microvesicles and could potentially explain increased predisposition to thromboembolism in some elderly females

    30-day morbidity and mortality of sleeve gastrectomy, Roux-en-Y gastric bypass and one anastomosis gastric bypass: a propensity score-matched analysis of the GENEVA data

    Get PDF
    Background: There is a paucity of data comparing 30-day morbidity and mortality of sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB), and one anastomosis gastric bypass (OAGB). This study aimed to compare the 30-day safety of SG, RYGB, and OAGB in propensity score-matched cohorts. Materials and methods: This analysis utilised data collected from the GENEVA study which was a multicentre observational cohort study of bariatric and metabolic surgery (BMS) in 185 centres across 42 countries between 01/05/2022 and 31/10/2020 during the Coronavirus Disease-2019 (COVID-19) pandemic. 30-day complications were categorised according to the Clavien–Dindo classification. Patients receiving SG, RYGB, or OAGB were propensity-matched according to baseline characteristics and 30-day complications were compared between groups. Results: In total, 6770 patients (SG 3983; OAGB 702; RYGB 2085) were included in this analysis. Prior to matching, RYGB was associated with highest 30-day complication rate (SG 5.8%; OAGB 7.5%; RYGB 8.0% (p = 0.006)). On multivariate regression modelling, Insulin-dependent type 2 diabetes mellitus and hypercholesterolaemia were associated with increased 30-day complications. Being a non-smoker was associated with reduced complication rates. When compared to SG as a reference category, RYGB, but not OAGB, was associated with an increased rate of 30-day complications. A total of 702 pairs of SG and OAGB were propensity score-matched. The complication rate in the SG group was 7.3% (n = 51) as compared to 7.5% (n = 53) in the OAGB group (p = 0.68). Similarly, 2085 pairs of SG and RYGB were propensity score-matched. The complication rate in the SG group was 6.1% (n = 127) as compared to 7.9% (n = 166) in the RYGB group (p = 0.09). And, 702 pairs of OAGB and RYGB were matched. The complication rate in both groups was the same at 7.5 % (n = 53; p = 0.07). Conclusions: This global study found no significant difference in the 30-day morbidity and mortality of SG, RYGB, and OAGB in propensity score-matched cohorts
    • …
    corecore