49 research outputs found

    Effect of self-organization and properties of aqueous disperse systems based on the moss peptide PpCLE2 in a low concentration range on the growth of Arabidopsis thaliana roots

    Get PDF
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. It is shown for the first time using a complex of physicochemical methods (dynamic and electrophoretic light scattering, conductometry, pH-metry) that below a threshold concentration of 1.0•10 –7 mol L –1 the disperse phase of the aqueous systems based on moss peptide PpCLE2 undergoes the domain—nanoassociate rearrangement, which affects the nonmonotonic concentration dependences of the specific electrical conductivity and pH and can result in a multidirectional profile of the dependence of the growth of the primary and lateral roots of the Arabidopsis thaliana seed plant in the range of calculated concentrations from 1.0•10 –6 to 1.0•10 –12 mol L –1

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy

    Ultra-low luminescence of humid air and its possible role in negative air ion therapy

    No full text
    322-329One of the unresolved questions related to the mechanism of action of light negative air ions (reactive oxygen species) produced by air ionizers upon humans and animals is transmission of these short-living chemical species upon long distances from the place of their origin. We discovered the phenomenon which may probably resolve this problem. When a thin layer of water hydrating a hygroscopic surface absorbs rare UV-photons capable to split water molecules a flash of photon emission in UV- and visible regions of spectrum is observed. This flash (or oxygen-dependent oxidative processes underlying it) initiate reactions accompanied with generation of electronic excitation in the air contacting water film. Excitation propagates through the air at macroscopic distances, and the level of propagating excitation increases with elevation of air humidity. When air humidity exceeds 50% air excitation gains oscillatory-wave character. This phenomenon may endow into the mechanism of action of air ions generated artificially, and also into some natural processes where ordered water films may form and the latter may serve targets for energy impulses initiating oxygen-dependent oxidative processes in these films

    Water: a medium where dissipative structures are produced by a coherent dynamics.

    No full text
    The Belousov-Zhabotinsky phenomenon is analyzed in a framework where the dynamics of dissipative structures outlined by Prigogine is implemented through the collective dynamics produced in liquid water by Quantum Electrodynamics, which has received recently some experimental support. A mechanism allowing the appearance of self-produced oscillations is suggested

    Biophoton research in blood reveals its holistic properties

    No full text
    473-482<span style="font-size:14.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:hi"="" lang="EN-IN">Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.</span
    corecore