24 research outputs found

    Alpine Crossroads or Origin of Genetic Diversity? Comparative Phylogeography of Two Sympatric Microgastropod Species

    Get PDF
    The Alpine Region, constituting the Alps and the Dinaric Alps, has played a major role in the formation of current patterns of biodiversity either as a contact zone of postglacial expanding lineages or as the origin of genetic diversity. In our study, we tested these hypotheses for two widespread, sympatric microgastropod taxa – Carychium minimum O.F. Müller, 1774 and Carychium tridentatum (Risso, 1826) (Gastropoda, Eupulmonata, Carychiidae) – by using COI sequence data and species potential distribution models analyzed in a statistical phylogeographical framework. Additionally, we examined disjunct transatlantic populations of those taxa from the Azores and North America. In general, both Carychium taxa demonstrate a genetic structure composed of several differentiated haplotype lineages most likely resulting from allopatric diversification in isolated refugial areas during the Pleistocene glacial periods. However, the genetic structure of Carychium minimum is more pronounced, which can be attributed to ecological constraints relating to habitat proximity to permanent bodies of water. For most of the Carychium lineages, the broader Alpine Region was identified as the likely origin of genetic diversity. Several lineages are endemic to the broader Alpine Region whereas a single lineage per species underwent a postglacial expansion to (re)colonize previously unsuitable habitats, e.g. in Northern Europe. The source populations of those expanding lineages can be traced back to the Eastern and Western Alps. Consequently, we identify the Alpine Region as a significant ‘hot-spot’ for the formation of genetic diversity within European Carychium lineages. Passive dispersal via anthropogenic means best explains the presence of transatlantic European Carychium populations on the Azores and in North America. We conclude that passive (anthropogenic) transport could mislead the interpretation of observed phylogeographical patterns in general

    Finding needles in haystacks : linking scientific names, reference specimens and molecular data for Fungi

    Get PDF
    DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Reannotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi.The Intramural Research Programs of the National Center for Biotechnology Information, National Library of Medicine and the National Human Genome Research Institute, both at the National Institutes of Health.http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353am201

    Thermogravimetric analysis and hot-stage Raman spectroscopy of cubic indium hydroxide

    Get PDF
    The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy

    Thermal decomposition of Bayer precipitates formed at varying temperatures

    Get PDF
    Bayer hydrotalcites prepared using the seawater neutralisation (SWN) process of Bayer liquors are characterised using X-ray diffraction and thermal analysis techniques. The Bayer hydrotalcites are synthesised at four different temperatures (0, 25, 55, 75 °C) to determine the effect on the thermal stability of the hydrotalcite structure, and to identify other precipitates that form at these temperatures. The interlayer distance increased with increasing synthesis temperature, up to 55 °C, and then decreased by 0.14 Å for Bayer hydrotalcites prepared at 75 °C. The three mineralogical phases identified in this investigation are; 1) Bayer hydrotalcite, 2), calcium carbonate species, and 3) hydromagnesite. The DTG curve can be separated into four decomposition steps; 1) the removal of adsorbed water and free interlayer water in hydrotalcite (30 – 230 °C), 2) the dehydroxylation of hydrotalcite and the decarbonation of hydrotalcite (250 – 400 °C), 3) the decarbonation of hydromagnesite (400 – 550 °C), and 4) the decarbonation of aragonite (550 – 650 °C)

    Investigation of IrO2/SnO2 Thin Film Evolution by Thermoanalytical and Spectroscopic Methods

    No full text
    The formation mechanism of thermally prepared IrO2/SnO2 thin films has been investigated under in situ conditions by thermogravimetry combined with mass spectrometry (TG-MS) and infrared emission spectroscopy (IRES). Mixtures of varying composition of the precursor salts (SnCl2·2H2O dissolved in ethanol and IrCl3·3H2O dissolved in isopropanol) were prepared onto titanium metal supports. Then the solvent was evaporated and the gel-like films were heated in an atmosphere containing 20% O2 and 80% Ar to 600°C. The thermogravimetric curves showed that the evolution of the oxide phases take place in several decomposition stages and the final mixed oxide film is formed between 490 and 550°C, depending on the noble metal content. Mass spectrometric ion intensity curves revealed that below 200°C crystallization water, residual solvent, and hydrogen-chloride (formed as a result of an intramolecular hydrolysis) are liberated. The decomposition of surface species (surface carbonates, carbonyls and carboxylates) formed via the interaction of the residual solvent with the precursor salts takes place up to 450°C as evidenced by emission Fourier transform infrared spectrometry

    Mechanism for hydrotalcite decomposition: a controlled rate thermal analysis study

    No full text
    The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. Hydrotalcites containing carbonate, vanadate and molybdate were prepared by coprecipitation. The resulting materials were characterized by XRD, simultaneous TG-DTG-DTA and controlled rate thermal analysis (CRTA) to determine the stability and thermal decomposition pathway of the synthesised hydrotalcites. For the carbonate intercalated hydrotalcite dehydration takes place in three steps two of which are quasi-isothermal and one non-isothermal. Dehydroxylation and decarbonation occur separately over the 235-330°C and 330-370°C temperature range. A second non-isothermal decarbonation step is observed in the 371-541°C range. In comparison the mixed carbonate-vanadate and carbonate-molybdate hydrotalcites show two dehydration steps and the dehydroxylation and decarbonation occur simultaneously. The observation of three dehydration steps is used to support the model of water molecules in three structurally distinct environments in the hydrotalcite interlayer. CRTA technology provides a mechanism for the decomposition of hydrotalcites

    Hydrazine Hydrate Intercalated Halloysite under Controlled Rate Thermal Analysis Conditions

    No full text
    The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay

    Controlled rate thermal analysis of hydromagnesite

    No full text
    The reaction of magnesium minerals such as brucite with CO2 is important in the sequestration of CO2. The study of the thermal stability of hydromagnesite and diagenetically related compounds is of fundamental importance to this sequestration. The understanding of the thermal stability of magnesium carbonates and the relative metastability of hydrous carbonates including hydromagnesite, artinite, nesquehonite, barringtonite and lansfordite is extremely important to the sequestration process for the removal of atmospheric CO2. This work makes a comparison of the dynamic and controlled rate thermal analysis of hydromagnesite and nesquehonite. The dynamic thermal analysis of synthetic hydromagnesite proves that dehydration and dehydroxylation take place in two steps at 135 and 184 degrees Celsius, and decarbonation at 412 degrees Celsius and 474 degrees Celsius. Controlled rate thermal analysis shows the first dehydration step is isothermal and the second quasi-isothermal at 108 and 145 degrees Celsius, respectively. The carbon dioxide is evolved in an isothermal decomposition at 370 degrees Celsius. CRTA technology offers better resolution and a more detailed interpretation of the decomposition processes of magnesium carbonates such as nesquehonite via approaching equilibrium conditions of decomposition through the elimination of the slow transfer of heat to the sample as a controlling parameter on the process of decomposition

    Mechanism for decomposition of aurichalcite—A controlled rate thermal analysis study

    No full text
    Controlled rate thermal analysis (CRTA) of a series of synthetic aurichalcite (Zn,Cu2+)5(CO3)2(OH)6 with the ratio of Cu/Zn varying from 0.1 to 0.5 proves that the dehydroxylation and carbonate loss occur as non-isothermal and isothermal decompositions. The temperature of the thermal decomposition increases as the Cu/Zn ratio increases. Thermal decomposition of aurichalcite provides a method for preparing mixed oxide catalysts at the molecular level as opposed to the particle level.\ud CRTA technology enables separation of the processes of dehydration, dehydroxylation and decarbonation. X-ray diffraction of the products of the thermal decomposition proved to be a mixture of the oxides ZnO and Cu2O
    corecore