1,449 research outputs found
Chemical Segregation in Hot Cores With Disk Candidates: An investigation with ALMA
In the study of high-mass star formation, hot cores are empirically defined
stages where chemically rich emission is detected toward a massive YSO. It is
unknown whether the physical origin of this emission is a disk, inner envelope,
or outflow cavity wall and whether the hot core stage is common to all massive
stars. We investigate the chemical make up of several hot molecular cores to
determine physical and chemical structure. We use high spectral and spatial
resolution Cycle 0 ALMA observations to determine how this stage fits into the
formation sequence of a high mass star. We observed the G35.20-0.74N and
G35.03+0.35 hot cores at 350 GHz. We analyzed spectra and maps from four
continuum peaks (A, B1, B2 and B3) in G35.20, separated by 1000-2000 AU, and
one continuum peak in G35.03. We made all possible line identifications across
8 GHz of spectral windows of molecular emission lines and determined column
densities and temperatures for as many as 35 species assuming local
thermodynamic equilibrium. In comparing the spectra of the four peaks, we find
each has a distinct chemical composition expressed in over 400 different
transitions. In G35.20, B1 and B2 contain oxygen- and sulfur-bearing organic
and inorganic species but few nitrogen-bearing species whereas A and B3 are
strong sources of O, S, and N-bearing species (especially those with the
CN-bond). CHDCN is clearly detected in A and B3 with D/H ratios of 8 and
13, respectively, but is much weaker at B1 and undetected at B2. No
deuterated species are detected in G35.03, but similar molecular abundances to
G35.20 were found in other species. We also find co-spatial emission of HNCO
and NHCHO in both sources indicating a strong chemical link between the two
species. The chemical segregation between N-bearing organic species and others
in G35.20 suggests the presence of multiple protostars, surrounded by a disk or
torus.Comment: 14 pages with 13 figures main text, 54 pages appendi
Using H3+ and H2D+ as probes of star-forming regions
The H3+ and H2D+ ions are important probes of the physical and chemical
conditions in regions of the interstellar medium where new stars are forming.
This paper reviews how observations of these species and of heavier ions such
as HCO+ and H3O+ can be used to derive chemical and kinematic properties of
nearby pre-stellar cores, and the cosmic-ray ionisation rate toward more
distant regions of high-mass star formation. Future prospects in the field are
outlined at the end.Comment: Refereed review, 6 pages, to appear in Phil. Trans. R. Soc.
CH observations toward the Orion Bar
CH is one of the first radicals to be detected in the interstellar
medium. Its higher rotational transitions have recently become available with
the Herschel Space Observatory. We aim to constrain the physical parameters of
the CH emitting gas toward the Orion Bar. We analyse the CH line
intensities measured toward the Orion Bar CO Peak and Herschel/HIFI maps of
CH, CH, and HCO, and a NANTEN map of [CI]. We interpret the observed
CH emission using radiative transfer and PDR models. Five rotational
transitions of CH have been detected in the HIFI frequency range toward the
CO peak. A single component rotational diagram gives a rotation temperature
of ~64 K and a beam-averaged CH column density of 410
cm. The measured transitions cannot be explained by any single parameter
model. According to a non-LTE model, most of the CH column density produces
the lower- CH transitions and traces a warm ( ~ 100-150 K)
and dense ((H)~10-10 cm) gas. A small fraction of the
CH column density is required to reproduce the intensity of the highest-
transitions (=9-8 and N=10-9) originating from a high density
((H)~510 cm) hot ( ~ 400 K) gas. The
total beam-averaged CH column density in the model is 10 cm.
Both the non-LTE radiative transfer model and a simple PDR model representing
the Orion Bar with a plane-parallel slab of gas and dust suggest, that CH
cannot be described by a single pressure component, unlike the reactive ion
CH, which was previously analysed toward the Orion Bar CO peak. The
physical parameters traced by the higher rotational transitions
(=6-5,...,10-9) of CH may be consistent with the edges of dense clumps
exposed to UV radiation near the ionization front of the Orion Bar.Comment: Proposed for acceptance in A&A, abstract abridge
Temperatures of dust and gas in S~140
In dense parts of interstellar clouds (> 10^5 cm^-3), dust & gas are expected
to be in thermal equilibrium, being coupled via collisions. However, previous
studies have shown that the temperatures of the dust & gas may remain decoupled
even at higher densities. We study in detail the temperatures of dust & gas in
the photon-dominated region S 140, especially around the deeply embedded
infrared sources IRS 1-3 and at the ionization front. We derive the dust
temperature and column density by combining Herschel PACS continuum
observations with SOFIA observations at 37 m and SCUBA at 450 m. We
model these observations using greybody fits and the DUSTY radiative transfer
code. For the gas part we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and
C18O 1-0 emission lines mapped with the IRAM-30m over a 4' field. Around IRS
1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9
and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust
model derived with DUSTY as input to the non-local radiative transfer model
RATRAN. We find that the gas temperature around the infrared sources varies
between 35 and 55K and that the gas is systematically warmer than the dust by
~5-15K despite the high gas density. In addition we observe an increase of the
gas temperature from 30-35K in the surrounding up to 40-45K towards the
ionization front, most likely due to the UV radiation from the external star.
Furthermore, detailed models of the temperature structure close to IRS 1 show
that the gas is warmer and/or denser than what we model. Finally, modelling of
the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few
~10^2 Lo. We conclude that the gas heating in the S 140 region is very
efficient even at high densities, most likely due to the deep UV penetration
from the embedded sources in a clumpy medium and/or oblique shocks.Comment: 15 pages, 23 figures, 4 tables, accepted for publication in A&
Observation-assisted optimal control of quantum dynamics
This paper explores the utility of instantaneous and continuous observations
in the optimal control of quantum dynamics. Simulations of the processes are
performed on several multilevel quantum systems with the goal of population
transfer. Optimal control fields are shown to be capable of cooperating or
fighting with observations to achieve a good yield, and the nature of the
observations may be optimized to more effectively control the quantum dynamics.
Quantum observations also can break dynamical symmetries to increase the
controllability of a quantum system. The quantum Zeno and anti-Zeno effects
induced by observations are the key operating principles in these processes.
The results indicate that quantum observations can be effective tools in the
control of quantum dynamics
Bayesian estimates of astronomical time delays between gravitationally lensed stochastic light curves
The gravitational field of a galaxy can act as a lens and deflect the light emitted by a more distant object such as a quasar. Strong gravitational lensing causes multiple images of the same quasar to ap- pear in the sky. Since the light in each gravitationally lensed image traverses a different path length from the quasar to the Earth, fluc- tuations in the source brightness are observed in the several images at different times. The time delay between these fluctuations can be used to constrain cosmological parameters and can be inferred from the time series of brightness data or light curves of each image. To estimate the time delay, we construct a model based on a state- space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. We account for microlensing, an additional source of independent long-term ex- trinsic variability, via a polynomial regression. Our Bayesian strategy adopts a Metropolis-Hastings within Gibbs sampler. We improve the sampler by using an ancillarity-sufficiency interweaving strategy and adaptive Markov chain Monte Carlo. We introduce a profile likeli- hood of the time delay as an approximation of its marginal posterior distribution. The Bayesian and profile likelihood approaches comple- ment each other, producing almost identical results; the Bayesian method is more principled but the profile likelihood is simpler to implement. We demonstrate our estimation strategy using simulated data of doubly- and quadruply-lensed quasars, and observed data from quasars Q0957+561 and J1029+2623
Observation of First-Order Metal-Insulator Transition without Structural Phase Transition in VO_2
An abrupt first-order metal-insulator transition (MIT) without structural
phase transition is first observed by current-voltage measurements and
micro-Raman scattering experiments, when a DC electric field is applied to a
Mott insulator VO_2 based two-terminal device. An abrupt current jump is
measured at a critical electric field. The Raman-shift frequency and the
bandwidth of the most predominant Raman-active A_g mode, excited by the
electric field, do not change through the abrupt MIT, while, they, excited by
temperature, pronouncedly soften and damp (structural MIT), respectively. This
structural MIT is found to occur secondarily.Comment: 4 pages, 4 figure
Detection of interstellar H_2D^+ emission
We report the detection of the 1_{10}-1_{11} ground state transition of
ortho-H_2D^+ at 372.421 GHz in emission from the young stellar object NGC 1333
IRAS 4A. Detailed excitation models with a power-law temperature and density
structure yield a beam-averaged H_2D^+ abundance of 3 x 10^{-12} with an
uncertainty of a factor of two. The line was not detected toward W 33A, GL
2591, and NGC 2264 IRS, in the latter source at a level which is 3-8 times
lower than previous observations. The H_2D^+ data provide direct evidence in
support of low-temperature chemical models in which H_2D^+ is enhanced by the
reaction of H_3^+ and HD. The H_2D^+ enhancement toward NGC 1333 IRAS 4A is
also reflected in the high DCO^+/HCO^+ abundance ratio. Simultaneous
observations of the N_2H^+ 4-3 line show that its abundance is about 50-100
times lower in NGC 1333 IRAS 4A than in the other sources, suggesting
significant depletion of N_2. The N_2H^+ data provide independent lower limits
on the H_3^+ abundance which are consistent with the abundances derived from
H_2D^+. The corresponding limits on the H_3^+$ column density agree with recent
near-infrared absorption measurements of H_3^+ toward W 33A and GL 2591.Comment: Standard AAS LaTeX format (15 pages + 2 figures
- …