132 research outputs found

    3D printing of gas jet nozzles for laser-plasma accelerators

    Full text link
    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular it was reported that appropriate density tailoring can result in improved injection, acceleration and collimation of laser-accelerated electron beams. To achieve such profiles innovative target designs are required. For this purpose we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling (FDM) to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliqu\'ee

    Energy boost in laser wakefield accelerators using sharp density transitions

    Full text link
    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime it is much more difficult to achieve phase locking. As an alternative we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations and we present gain estimations for single and multiple stages of rephasing

    Response to tilted magnetic fields in Bi2Sr2CaCu2O8 with columnar defects: Evidence for transverse Meissner effect

    Full text link
    The transverse Meissner effect (TME) in the highly layered superconductor Bi2Sr2CaCu2O(8+y) with columnar defects is investigated by transport measurements. We present detailed evidence for the persistence of the Bose-glass phase when H is tilted at an angle theta < theta_c (T) away from the column direction: (i) the variable-range vortex hopping process for low currents crosses over to the half-loops regime for high currents; (ii) in both regimes near theta_c(T) the energy barriers vanish linearly with tan(theta) ; (iii) the transition temperature is governed by T_{BG}(0) -T_{BG}(theta) sim |tan(theta)|^{1/\nu_{\perp}} with \nu_{\perp}=1.0 +/- 0.1. Furthermore, above the transition as theta->\theta_c+, moving kink chains consistent with a commensurate-incommensurate transition scenario are observed. These results thereby clearly show the existence of the TME for theta < theta_c(T).Comment: 4 pages, RevTeX, 5 EPS figure

    Effect of field tilting on the vortices in irradiated Bi-2212

    Full text link
    We report on transport measurements in a Bi-2212 single crystal with columnar defects parallel to the c-axis. The tilt of the magnetic field away from the direction of the tracks is studied for filling factors f=B_z/B_phi<1. Near the Bose Glass transition temperature T_BG, the angular scaling laws are verified and we find the field independent critical exponents nu'=1.1 and z'=5.30. Finally, above H_perpC we evidence the signature of a smectic-A like vortex phase. These experimental results provide support for the Bose Glass theory.Comment: 2 pages LaTeX, 2 EPS figures, uses fleqn and espcrc2 style macros. Submitted to Proceedings of M2S-HTSC-V

    Femtosecond x rays from laser-plasma accelerators

    Get PDF
    Relativistic interaction of short-pulse lasers with underdense plasmas has recently led to the emergence of a novel generation of femtosecond x-ray sources. Based on radiation from electrons accelerated in plasma, these sources have the common properties to be compact and to deliver collimated, incoherent and femtosecond radiation. In this article we review, within a unified formalism, the betatron radiation of trapped and accelerated electrons in the so-called bubble regime, the synchrotron radiation of laser-accelerated electrons in usual meter-scale undulators, the nonlinear Thomson scattering from relativistic electrons oscillating in an intense laser field, and the Thomson backscattered radiation of a laser beam by laser-accelerated electrons. The underlying physics is presented using ideal models, the relevant parameters are defined, and analytical expressions providing the features of the sources are given. Numerical simulations and a summary of recent experimental results on the different mechanisms are also presented. Each section ends with the foreseen development of each scheme. Finally, one of the most promising applications of laser-plasma accelerators is discussed: the realization of a compact free-electron laser in the x-ray range of the spectrum. In the conclusion, the relevant parameters characterizing each sources are summarized. Considering typical laser-plasma interaction parameters obtained with currently available lasers, examples of the source features are given. The sources are then compared to each other in order to define their field of applications.Comment: 58 pages, 41 figure

    Observation of longitudinal and transverse self-injections in laser-plasma accelerators

    Full text link
    Laser-plasma accelerators can produce high quality electron beams, up to giga-electronvolts in energy, from a centimeter scale device. The properties of the electron beams and the accelerator stability are largely determined by the injection stage of electrons into the accelerator. The simplest mechanism of injection is self-injection, in which the wakefield is strong enough to trap cold plasma electrons into the laser wake. The main drawback of this method is its lack of shot-to-shot stability. Here we present experimental and numerical results that demonstrate the existence of two different self-injection mechanisms. Transverse self-injection is shown to lead to low stability and poor quality electron beams, because of a strong dependence on the intensity profile of the laser pulse. In contrast, longitudinal injection, which is unambiguously observed for the first time, is shown to lead to much more stable acceleration and higher quality electron beams.Comment: 7 pages, 7 figure
    • …
    corecore