60 research outputs found

    The Dependence of the Soft X-ray Properties of LMXBs on the Metallicity of Their Environment

    Full text link
    We determine the X-ray spectral properties of a sample of low-mass X-ray binaries (LMXBs) which reside in globular clusters of M31, as well as five LMXBs in Galactic globular clusters and in the Large Magellanic Cloud using the ROSAT PSPC. We find a trend in the X-ray properties of the LMXBs as a function of globular cluster metallicity. The spectra of LMXBs become progressively softer as the metallicity of its environment increases. The one M31 globular cluster LMXB in our sample which has a metallicity greater than solar has spectral properties similar to those of LMXBs in the bulge of M31, but markedly different from those which reside in low metallicity globular clusters, both in M31 and the Galaxy. The spectral properties of this high metallicity LMXB is also similar to those of X-ray faint early-type galaxies. This lends support to the claim that a majority of the X-ray emission from these X-ray faint early-type galaxies results from LMXBs and not hot gas, as is the case in their X-ray bright counterparts.Comment: 5 pages, 2 embedded Postscript figures, uses emulateapj.sty, Astrophysical Journal Letters, in pres

    Aeromagnetic survey of the Somma-Vesuvius volcanic area

    Get PDF
    In this paper we present and discuss the results of a geophysical airborne survey carried out in the Somma-Vesuvius volcanic area, Southern Italy, in 1999. The helicopter-borne survey was aimed at giving new detailed insights into the distribution of the magnetization of the area and, therefore, into the volcanological characteristics of the region, enhancing the knowledge given by a previous low resolution survey carried out at a regional scale by Agip. The new survey was carried out by flying on a surface parallel to the topography of the area, along flight lines spaced 600 m apart. The obtained total field map is dominated by a large anomaly related to the Mt. Somma-Vesuvius complex itself and characterized by a roughly elliptical shape. High-frequency anomalies occur in the edifice and in the area east of it, partly produced by cultural noise due to the densely inhabited area. The compilation of the maps of the analytic signal and of the horizontal derivative of the field allowed the location of the lateral boundaries of the magnetic sources of the area and represents a first step toward the interpretation of the maps in terms of geological structures

    Novel role for alpha-2-macroglobulin (A2M) as a disease modifying protein in senile osteoporosis

    Get PDF
    Introduction: In the rapidly aging U.S. population, age-induced bone loss (senile osteoporosis) represents a major public health concern that is associated with a significant increased risk for low trauma fragility fractures, which are debilitating to patients, cause significant morbidity and mortality, and are costly to treat and manage. While various treatments exist to slow bone loss in osteoporosis patients, these suffer from poor tolerability and label restrictions that limit their overall effectiveness. Over the past decade, skeletal stem/progenitor cells (SSPCs), which are the main precursor of osteoblasts and adipocytes in adult bone marrow (BM), have emerged as important players in osteoporosis.Methods: Age-induced skeletal pathology was quantified in elderly (24-month-old) vs. mature (3-month-old) mice by micro-CT and changes in SSPC abundance in the BM of these mice was quantified by fluorescence-activated cell sorting (FACS). SSPCs from elderly vs. mature mice were also analyzed by RNA-Seq to identify differentially expressed genes (DEGs), and gain and loss-of-function studies were performed in human BM-derived mesenchymal stromal cells (BM-MSCs) to assess A2M function.Results: Elderly mice were shown to exhibit significant age-induced skeletal pathology, which correlated with a significant increase in SSPC abundance in BM. RNA-seq analysis identified alpha-2-macroglobulin (A2M), a pan-protease inhibitor that also binds inflammatory cytokines, as one of the most downregulated transcripts in SSPCs isolated from the BM of elderly vs. mature mice, and silencing of A2M expression in human BM-MSCs induced their proliferation and skewed their lineage bifurcation toward adipogenesis at the expense of osteogenesis thereby recapitulating critical aspects of age-induced stem cell dysfunction.Conclusion: These findings identify A2M as a novel disease modifying protein in osteoporosis, downregulation of which in bone marrow promotes SSPC dysfunction and imbalances in skeletal homeostasis

    Optimal selection of epitopes for TXP-immunoaffinity mass spectrometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass spectrometry (MS) based protein profiling has become one of the key technologies in biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches, where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed against short terminal epitopes, promise a significant gain in efficiency.</p> <p>Results</p> <p>We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target epitopes with undesirable properties.</p> <p>Conclusions</p> <p>For small datasets (a few hundred proteins) it is possible to solve the problem to optimality with moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use of heuristics.</p

    Identifying Modules of Coexpressed Transcript Units and Their Organization of Saccharopolyspora erythraea from Time Series Gene Expression Profiles

    Get PDF
    BACKGROUND: The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. METHODOLOGY/PRINCIPAL FINDINGS: In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs) across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A), and secondary metabolism is induced when the growth is slowed down (phase B). Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery) gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. CONCLUSIONS: This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies on other prokaryotic microorganisms

    Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors

    Get PDF
    Today, annotated amino acid sequences of more and more transcription factors (TFs) are readily available. Quantitative information about their DNA-binding specificities, however, are hard to obtain. Position frequency matrices (PFMs), the most widely used models to represent binding specificities, are experimentally characterized only for a small fraction of all TFs. Even for some of the most intensively studied eukaryotic organisms (i.e., human, rat and mouse), roughly one-sixth of all proteins with annotated DNA-binding domain have been characterized experimentally. Here, we present a new method based on support vector regression for predicting quantitative DNA-binding specificities of TFs in different eukaryotic species. This approach estimates a quantitative measure for the PFM similarity of two proteins, based on various features derived from their protein sequences. The method is trained and tested on a dataset containing 1 239 TFs with known DNA-binding specificity, and used to predict specific DNA target motifs for 645 TFs with high accuracy

    The Hard X-ray Luminosity of OB Star Populations: Implications for the Contribution of Star Formation to the Cosmic X-ray Background

    Get PDF
    We present an empirical analysis of the integrated X-ray luminosity arising from populations of OB stars. In particular, we utilize results from the All-Sky Monitor on RXTE, along with archival data from previous missions, to assess the mean integrated output of X-rays in the 2-10 keV band from accreting early-type binaries within 3 kpc of the Sun. Using a recent OB star census of the Solar neighborhood, we then calculate the specific X-ray luminosity per O star from accretion-powered systems. We also assess the contribution to the total X-ray luminosity of an OB population from associated T Tauri stars, stellar winds, and supernovae. We repeat this exercise for the major Local Group galaxies, concluding that the total X-ray luminosity per O star spans a broad range from 2 to 20e34 erg/s. Contrary to previous results, we do not find a consistent trend with metallicity; in fact, the specific luminosities for M31 and the SMC are equal, despite having metallicities which differ by an order of magnitude. In light of these results, we assess the fraction of the observed 2-10 keV emission from starburst galaxies that arises directly from their OB star populations, concluding that, while binaries can explain most of the hard X-ray emission in many local starbursts, a significant additional component or components must be present in some systems. A discussion of the nature of this additional emission, along with its implications for the contribution of starbursts to the cosmic X-ray background, concludes our report.Comment: aastex, 30 pages including 2 tables and 1 figure. To appear in Ap

    Guidelines for the selection of appropriate remote sensing technologies for landslide detection, monitoring and rapid mapping: the experience of the SafeLand European Project.

    Get PDF
    New earth observation satellites, innovative airborne platforms and sensors, high precision laser scanners, and enhanced ground-based geophysical investigation tools are a few examples of the increasing diversity of remote sensing technologies used in landslide analysis. The use of advanced sensors and analysis methods can help to significantly increase our understanding of potentially hazardous areas and helps to reduce associated risk. However, the choice of the optimal technology, analysis method and observation strategy requires careful considerations of the landslide process in the local and regional context, and the advantages and limitations of each technique. Guidelines for the selection of the most suitable remote sensing technologies according to different landslide types, displacement velocities, observational scales and risk management strategies have been proposed. The guidelines are meant to aid operational decision making, and include information such as spatial resolution and coverage, data and processing costs, and maturity of the method. The guidelines target scientists and end-users in charge of risk management, from the detection to the monitoring and the rapid mapping of landslides. They are illustrated by recent innovative methodologies developed for the creation and updating of landslide inventory maps, for the construction of landslide deformation maps and for the quantification of hazard. The guidelines were compiled with contributions from experts on landslide remote sensing from 13 European institutions coming from 8 different countries. This work is presented within the framework of the SafeLand project funded by the European Commission’s FP7 Programme.JRC.H.7-Climate Risk Managemen
    corecore