14 research outputs found

    Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    Get PDF
    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3 +CD4-CD8- T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4 + T cells to SIV-negative animals resulted in rapid loss of CD4 + T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4- low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell-like helper functions upon SIV-induced CD4+ T cell depletion in this species

    Fine Definition of the CXCR4-Binding Region on the V3 Loop of Feline Immunodeficiency Virus Surface Glycoprotein

    Get PDF
    The chemokine receptor CXCR4 is shared by primary and laboratory-adapted strains of feline immunodeficiency virus (FIV) for viral entry. Our previous studies implicated a contiguous nine-amino-acid region of the V3 loop of the FIV envelope surface as important in CXCR4 binding and virus entry. The binding is specific for CXCR4 since it can be inhibited by AMD3100, a selective CXCR4 inhibitor. Additional site-directed mutagenesis was used to further reveal the key residues. Binding studies indicated that basic residues R395, K397, R399 as well as N398 are critical for CXCR4 binding. The effect of other amino acid residues on receptor binding depends on the type of amino acid residue substituted. The binding study results were confirmed on human CXCR4-expressing SupT1 cells and correlated with entry efficiency using a virus entry assay. Amino acid residues critical for CXCR4 are not critical for interactions with the primary binding receptor CD134, which has an equivalent role as CD4 for HIV-1 binding. The ELISA results show that W394 and W400 are crucial for the recognition by neutralizing anti-V3 antibodies. Since certain strains of HIV-1 also use CXCR4 as the entry receptor, the findings make the feline model attractive for development of broad-based entry antagonists and for study of the molecular mechanism of receptor/virus interactions

    Comparative Expression Profile of miRNA and mRNA in Primary Peripheral Blood Mononuclear Cells Infected with Human Immunodeficiency Virus (HIV-1)

    Get PDF
    Host cells respond to exogenous infectious agents such as viruses, including HIV-1. Studies have evaluated the changes associated with virus infection at the transcriptional and translational levels of the cellular genes involved in specific pathways. While this approach is useful, in our view it provides only a partial view of genome-wide changes. Recently, technological advances in the expression profiling at the microRNA (miRNA) and mRNA levels have made it possible to evaluate the changes in the components of multiple pathways. To understand the role of miRNA and its interplay with host cellular gene expression (mRNA) during HIV-1 infection, we performed a comparative global miRNA and mRNA microarray using human PBMCs infected with HIV-1. The PBMCs were derived from multiple donors and were infected with virus generated from the molecular clone pNL4-3. The results showed that HIV-1 infection led to altered regulation of 21 miRNAs and 444 mRNA more than 2-fold, with a statistical significance of p<0.05. Furthermore, the differentially regulated miRNA and mRNA were shown to be associated with host cellular pathways involved in cell cycle/proliferation, apoptosis, T-cell signaling, and immune activation. We also observed a number of inverse correlations of miRNA and mRNA expression in infected PBMCs, further confirming the interrelationship between miRNA and mRNA regulation during HIV-1 infection. These results for the first time provide evidence that the miRNA profile could be an early indicator of host cellular dysfunction induced by HIV-1

    Differential HIV-1 replication in neonatal and adult blood mononuclear cells is influenced at the level of HIV-1 gene expression

    No full text
    The majority of HIV-1-infected neonates and infants have a higher level of viremia and develop AIDS more rapidly than infected adults, including differences seen in clinical manifestations. To determine the mechanisms of HIV-1 infection in neonates vs. adults, we compared the replication kinetics of HIV-1 in neonatal (cord) and adult blood T lymphocytes and monocyte-derived macrophages (MDM) from seven different donors. We found that HIV-1 replicated 3-fold better in cord blood T lymphocytes compared with adult blood T lymphocytes and 9-fold better in cord MDM than adult MDM. We also show that this differential HIV-1 replication did not depend on differences in cell proliferative capabilities, cell surface expression of CD4, CXCR4, and CCR5, or in the amount of PCR products of reverse transcription, DNA synthesis, and translocation of preintegration complex into the nucleus in cord and adult T lymphocytes and MDM. Furthermore, using a single-cycle replication competent HIV-1-NL4–3-Env(−) luciferase amphotropic virus, which measures HIV-1 transcriptional activity independent of receptor and coreceptor expression, we found there was a 3-fold increase of HIV-1 LTR-driven luciferase expression in cord T lymphocytes compared with adult T lymphocytes and 10-fold in cord MDM than in adult MDM. The HIV-1 LTR-driven luciferase expression correlated with HIV-1 LTR transcription, as measured by ribonuclease protection assay. These data suggest that the increased replication of HIV-1 in cord blood compared with adult blood mononuclear cells is regulated at the level of HIV-1 gene expression, resulting in a higher level of viremia and faster disease progression in neonates than adults

    Homeostatic Cytokines Induce CD4 Downregulation in African Green Monkeys Independently of Antigen Exposure To Generate Simian Immunodeficiency Virus-Resistant CD8   T Cells

    No full text
    African green monkeys (AGMs; genus Chlorocebus) are a natural host of simian immunodeficiency virus (SIV(AGM)). As they do not develop simian AIDS, there is great interest in understanding how this species has evolved to avoid immunodeficiency. Adult African green monkeys naturally have low numbers of CD4 T cells and a large population of major histocompatibility complex class II-restricted CD8α(dim) T cells that are generated through CD4 downregulation in CD4(+) T cells. Mechanisms that drive this process of CD4 downregulation are unknown. Here, we show that juvenile AGMs accelerate CD4-to-CD8αα conversion upon SIV infection and avoid progression to AIDS. The CD4 downregulation induced by SIV infection is not limited to SIV-specific T cells, and vaccination of an adult AGM who had a negligible number of CD4 T cells demonstrated that CD4 downregulation can occur without antigenic exposure. Finally, we show that the T cell homeostatic cytokines interleukin-2 (IL-2), IL-7, and IL-15 can induce CD4 downregulation in vitro. These data identify a mechanism that allows AGMs to generate a large, diverse population of T cells that perform CD4 T cell functions but are resistant to SIV infection. A better understanding of this mechanism may allow the development of treatments to induce protective CD4 downregulation in humans. IMPORTANCE Many African primate species are naturally infected with SIV. African green monkeys, one natural host species, avoid simian AIDS by creating a population of T cells that lack CD4, the human immunodeficiency virus/SIV receptor; therefore, they are resistant to infection. However, these T cells maintain properties of CD4(+) T cells even after receptor downregulation and preserve immune function. Here, we show that juvenile AGMs, who have not undergone extensive CD4 downregulation, accelerate this process upon SIV infection. Furthermore, we show that in vivo, CD4 downregulation does not occur exclusively in antigen-experienced T cells. Finally, we show that the cytokines IL-2, IL-7, and IL-15, which induce homeostatic T cell proliferation, lead to CD4 downregulation in vitro; therefore, they can provide signals that lead to antigen-independent CD4 downregulation. These results suggest that if a similar process of CD4 downregulation could be induced in humans, it could provide a cure for AIDS
    corecore