188 research outputs found
Magnetite: Raman study of the high-pressure and low-temperature effects
We report the results of a low-temperature (300K-15K) high-pressure (up to
22GPa) Raman study of the Verwey transition in magnetite (Fe3O4). We use
additional Raman modes observed below the Verwey transition to determine how
the transition temperature changes with the quasihydrostatic pressure. Increase
of the pressure results in the linear decrease of the Verwey transition
temperature, with no discontinuity. The corresponding pressure coefficient
dTV/dP is found to be ~ -5.2 K/GPa. Such a decrease is substantially larger
than the one predicted by the mean-field Coulomb interaction model of the
transition
Superconductivity in the Chalcogens up to Multimegabar Pressures
Highly sensitive magnetic susceptibility techniques were used to measure the
superconducting transition temperatures in S up to 231(5) GPa. S
transforms to a superconductor with T of 10 K and has a discontinuity in
T_c dependence at 160 GPa corresponding to bco to beta-Po phase transition.
Above this pressure T_c in S has a maximum reaching about 17.3(+/-0.5) K at 200
GPa and then slowly decreases with pressure to 15 K at 230 GPa.
This trend in the pressure dependence parallels the behavior of the heavier
members Se and Te. Superconductivity in Se was also observed from 15 to 25 GPa
with T_c changing from 4 to 6 K and above 150 GPa with T_c of 8 K.
Similiarities in the T_c dependences for S, Se, and Te, and the implications
for oxygen are discussed.Comment: 4 pages, 10 figure
Raman study of the Verwey transition in Magnetite at high-pressure and low-temperature; effect of Al doping
We report high-pressure low-temperature Raman studies of the Verwey
transition in pure and Al-doped magnetite (Fe_3O_4). The low temperature phase
of magnetite displays a number of additional Raman modes that serve as
transition markers. These transition markers allow one to investigate the
effect of hydrostatic pressure on the Verwey transition temperature. Al-doped
magnetite Fe_2.8Al_0.2O_4 (TV=116.5K) displays a nearly linear decrease of the
transition temperature with an increase of pressure yielding dP/dT_V = -0.096
GPa/K. In contrast pure magnetite displays a significantly steeper slope of the
PT equilibrium line with dP/dT_V = -0.18 GPa/K. The slope of the PT equilibrium
lines is related to the changes of the molar entropy and molar volume at the
transition. We compare our spectroscopic data with that obtained from the
ambient pressure specific heat measurements and find a good agreement in the
optimally doped magnetite. Our data indicates that Al doping leads to a smaller
entropy change and larger volume expansion at the transition. Our data displays
the trends that are consistent with the mean field model of the transition that
assumes charge ordering in magnetite.Comment: 17 pages, 3 figure
Signatures of pressure induced superconductivity in insulating Bi2212
We have performed several high pressure electrical resistance experiments on
Bi1.98Sr2.06Y0.68Cu2O8, an insulating parent compound of the high-Tc Bi2212
family of copper oxide superconductors. We find a resistive anomaly, a downturn
at low temperature, that onsets with applied pressure in the 20-40 kbar range.
Through both resistance and magnetoresistance measurements, we identify this
anomaly as a signature of induced superconductivity. Resistance to higher
pressures decreases Tc, giving a maximum of 10 K. The higher pressure
measurements exhibit a strong sensitivity to the hydrostaticity of the pressure
environment. We make comparisons to the pressure induced superconductivity now
ubiquitous in the iron arsenides.Comment: 5 pages, 4 figures, submitted to Phys. Rev.
Trends in Elasticity and Electronic Structure of Transition-Metal Nitrides and Carbides from First Principles
The elastic properties of the -structured transition-metal nitrides and
their carbide counterparts are studied using the {\it ab initio\} density
functional perturbation theory. The linear response results of elastic
constants are in excellent agreement with those obtained from numerical
derivative methods, and are also consistent with measured data. We find the
following trends: (1) Bulk moduli and tetragonal shear moduli
, increase and lattice constants decrease
rightward or downward on the Periodic Table for the metal component or if C is
replaced by N; (2) The inequality holds for
; (3) depends strongly on the number of valence electrons per
unit cell (). From the fitted curve of as a function of , we
can predict that MoN is unstable in structure, and transition-metal
carbonitrides ( ZrCN) and di-transition-metal carbides
( HfTaC) have maximum at .Comment: 4 pages, 2 figures, submitted to PRL. 2 typos in ref. 15 were
correcte
- …