11 research outputs found

    Numerical Investigation of Boundary Conditions for Moving Contact Line Problems

    Get PDF
    When boundary conditions arising from the usual hydrodynamic assumptions are applied, analyses of dynamic wetting processes lead to a well-known nonintegrable stress singularity at the dynamic contact line, necessitating new ways to model this problem. In this paper, numerical simulations for a set of representative problems are used to explore the possibility of providing material boundary conditions for predictive models of inertialess moving contact line processes. The calculations reveal that up to Capillary number Ca=0.15, the velocity along an arc of radius 10Li (Li is an inner, microscopic length scale! from the dynamic contact line is independent of the macroscopic length scale a for a.103Li , and compares well to the leading order analytical ‘‘modulated-wedge’’ flow field [R. G. Cox, J. Fluid Mech. 168, 169 (1986)] for Capillary number Ca,0.1. Systematic deviations between the numerical and analytical velocity field occur for 0.1168, 169 (1986)] is used as a boundary condition along an arc of radius R=10-2a from the dynamic contact line, agree well with those using two inner slip models for Ca\u3c0.1, with a breakdown at higher Ca. Computations in a cylindrical geometry reveal the role of azimuthal curvature effects on velocity profiles in this vicinity of dynamic contact lines. These calculations show that over an appropriate range of Ca, the velocity field and the meniscus slope in a geometry-independent region can potentially serve as material boundary conditions for models of processes containing dynamic contact lines

    Protein Glycosylation in Helicobacter pylori: Beyond the Flagellins?

    Get PDF
    Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori

    Root Canal Anatomy of Maxillary and Mandibular Teeth

    Get PDF
    It is a common knowledge that a comprehensive understanding of the complexity of the internal anatomy of teeth is imperative to ensure successful root canal treatment. The significance of canal anatomy has been emphasized by studies demonstrating that variations in canal geometry before cleaning, shaping, and obturation procedures had a greater effect on the outcome than the techniques themselves. In recent years, significant technological advances for imaging teeth, such as CBCT and micro-CT, respectively, have been introduced. Their noninvasive nature allows to perform in vivo anatomical studies using large populations to address the influence of several variables such as ethnicity, aging, gender, and others, on the root canal anatomy, as well as to evaluate, quantitatively and/or qualitatively, specific and fine anatomical features of a tooth group. The purpose of this chapter is to summarize the morphological aspects of the root canal anatomy published in the literature of all groups of teeth and illustrate with three-dimensional images acquired from micro-CT technology.info:eu-repo/semantics/publishedVersio

    RpoS-Regulated Genes of Escherichia coli Identified by Random lacZ Fusion Mutagenesis

    No full text
    RpoS is a conserved alternative sigma factor that regulates the expression of many stress response genes in Escherichia coli. The RpoS regulon is large but has not yet been completely characterized. In this study, we report the identification of over 100 RpoS-dependent fusions in a genetic screen based on the differential expression of an operon-lacZ fusion bank in rpoS mutant and wild-type backgrounds. Forty-eight independent gene fusions were identified, including several in well-characterized RpoS-regulated genes, such as osmY, katE, and otsA. Many of the other fusions mapped to genes of unknown function or to genes that were not previously known to be under RpoS control. Based on the homology to other known bacterial genes, some of the RpoS-regulated genes of unknown functions are likely important in nutrient scavenging
    corecore