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Numerical investigation of boundary conditions for moving contact
line problems

Sandesh Somalinga and Arijit Bose®
Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881

(Received 5 June 1998; accepted 7 October 1999

When boundary conditions arising from the usual hydrodynamic assumptions are applied, analyses
of dynamic wetting processes lead to a well-known nonintegrable stress singularity at the dynamic
contact line, necessitating new ways to model this problem. In this paper, numerical simulations for
a set of representative problems are used to explore the possibility of prowiditegial boundary
conditions for predictive models of inertialess moving contact line processes. The calculations
reveal that up to Capillary number €8.15, the velocity along an arc of radiusLA@L; is an inner,
microscopic length scaldrom the dynamic contact line is independent of the macroscopic length
scalea for a>10°L;, and compares well to the leading order analytical “modulated-wedge” flow
field [R. G. Cox, J. Fluid Mech168 169 (1986] for Capillary number Ca0.1. Systematic
deviations between the numerical and analytical velocity field occur forQak0.15, caused by

the inadequacy of the leading order analytical solution over this range of Ca. Meniscus shapes
produced from calculations in a truncated domain, where the modulated-wedge velocitiRfield

Cox, J. Fluid Mech.168 169 (1986] is used as a boundary condition along an arc of raéius
=10 2a from the dynamic contact line, agree well with those using two inner slip models for
Ca<0.1, with a breakdown at higher Ca. Computations in a cylindrical geometry reveal the role of
azimuthal curvature effects on velocity profiles in the vicinity of dynamic contact lines. These
calculations show that over an appropriate range of Ca, the velocity field and the meniscus slope in
a geometry-independent region can potentially serve as material boundary conditions for models of
processes containing dynamic contact lines. 2@00 American Institute of Physics.
[S1070-663(00)00402-5

I. INTRODUCTION aphysical nature, one consequence of this force divergence is
an unbounded interface curvature at the dynamic contact

Dynamic wetting phenomena, where one liquid spreadsine, resulting in the inability to specify a “true” dynamic
across a solid surface while displacing a second immisciblgontact angle. Because this angle serves as a boundary con-
fluid, are ubiquitous in both nature and in industrial pro-dition for the differential equation governing the shape of the
cesses. Some examples include spreading of insecticides @iquid—fluid interface, an ill-posed problem results. The lack
plants, coating of photographic film, movement of waterof amaterialboundary condition for the differential equation
through interstitial spaces within filter paper fibers, move-governing the interface shape represents a key obstacle to
ment of rain drops on windows, cavitation, and flotation ofdevelopment of predictive models of dynamic wetting pro-
ores during recovery of metals. Common to all of these is theesses. This limitation cannot be overcome by replacing the
presence of a moving contact line, at the three-phase intetrue dynamic contact angle by an “apparent” one, based
section, and a liquid—fluid boundary extending from thisupon extrapolation of a static-like meniscus to a putative
point. The shape of this surface has an important impact ogontact line, because these apparent contact angles depend
the behavior of these processes. For a given set of materialgpon macroscopic geometty.Thus, measurements made in
moving contact lines can be present in processes that haveoae configuration cannot, in principle, be used in another,
range of different macroscopic geometries. severely restricting the usefulness of this approach.

A geometry-independent set of boundary conditions for  The general strategy for overcoming this problem can be
models ofdynamicwetting processes are crucial for a robustunderstood by considering the forces that dominate over
evaluation of all the field variables and free-surface shapeshree different length scales that characterize the flow. In the
but this produces critical challenges. For a pure liquid, theputer region, characterized by a “macroscopic” length scale
customary hydrodynamic assumptions lead to a multivalued a” (the largest length over which surface tension forces are
velocity field at the dynamic contact lifelf the liquid is importany, all the usual hydrodynamic assumptions are ap-
Newtonian and the solid is nondeformable, this implies arplicable. For Ce&l (the Capillary number GauU/y,
infinite force exerted by the liquid on the solid. Besides itswhereU is a characteristic liquid speeg, the liquid viscos-
ity and v its surface tension viscous stresses in the outer
Author to whom correspondence should be addressed. Telephond€9iON are small compared to surface tension forces, the in-

(401)874-2804; Fax(401)874-4689; Electronic mail: bosea@egr.uri.edu terface shape is static-like to lowest order in Ca and strongly
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dependent on geometry. As the dynamic contact line is apdiate region as transferab{between different macroscopic
proached, viscous forces grow, and the meniscus shape geometries boundary conditions for models of processes
this intermediate region is the result of a balancdaafal  containing dynamic contact lines. Simulations provide the
viscous forces and surface tension. Because of the local nability to independently change boundary conditiémskeep
ture of the flow in this region, the interface shape is indepenthem fixed and controlling parameters in ways that are not
dent of macroscopic geometry. Within an “inner” region in possible in experiments. Because calculated meniscus shapes
the vicinity of the dynamic contact line, of characteristic di- are not subject to “experimental” errors, interface slopes
mensionsL;, classical hydrodynamics breaks down, andaccurate to a specified tolerance that is well beyond currently
new physics governs fluid behavior. Most common is theavailable experimental techniques can be obtained over the
assumption of “slip” between the liquid and solid, thereby whole computational domain, including, when necessary, the
removing the source of the multivalued velocity at the dy-immediate vicinity of the dynamic contact line. This feature
namic contact liné;other postulates include evaporation andallows a refined evaluation of the geometry-independence of
condensation at the contact linesurface diffusioh and any field variables or the meniscus shape. No attempt is
modified rheology. To date, no direct identification of any made to identify inner scale physics. However, if inner mod-
inner scale mechanism has been made; therefore, its natueés are available, either through analyses or experiments, in
remains a matter of speculation. Indirect experiments indithe form mathematical relationships or discrete data, they
cate that the inner scale physics is quite complex, and magan be incorporated easily into the calculations.
arise from multiple mechanisnfs. The Galerkin finite element method is used to solve for
For the double limit Ca:0, e—0, with Calne 1) of interface shapes and flow fields for a set of three model prob-
O(1), wheree=L/a, singular perturbation analysisf the  lems. The first consists of a flat plate entering a bath of liquid
resulting boundary value problem to lowest order in Ca, asin a deep rectangular cavity. We use two different inner
suming that the displaced fluid has zero viscosity, yields anodels and examine the flow field at a specified distance
solution for the interface shagell primed variables are di- from the dynamic contact line over a range of Ca and outer

mensional in the intermediate region of the form length scales. We compare our solutions to those from Cox
) _ , (referred to as the modulated-wedge velocity figlih order
OinermediatT ') =9~ "[9(r) + Caln(r'/R)], (D to determine the limits of applicability for the analytical so-
where lution, and identify the parameter space over which that so-
lution can be used as a boundary condition. For the second
0 ¢p— Cos¢ Sing problem, the computational domain is truncated by an arc of
g(a)zf W : 2 radiusR from the dynamic contact line, with;<R<a, es-

sentially eliminating the inner region from the simulation.

Ointermediark” ') is the angle between the moving solid and Modeling in this domain requires the specification of veloc-
the tangent to the liquid free surfa@he meniscus slopen ity inflow—outflow boundary conditions along the arc, and
the intermediate region at a distance from the dynamic we examine the consequences of those conditions on menis-
contact line, anddr=6(r'=R), wherer'=R is a location  cus shapes. In the third problem, a rod enters concentrically
within the intermediate region. The geometry-free nature ofnto a liquid in a deegylindrical cavity. This axisymmetric
Eg. (1), that is, its lack of dependence on the outer lengthconfiguration introduces an additional macroscopic geomet-
scale a, suggests that it can potentially form a materialric parameterg, defined as the ratio of the rod radius to the
boundary condition for the outer problem. To be consistenainnular gap width. We identify conditions under which this
with the dominant role ofocal viscous forces, the velocity geometric parameter starts playing a measurable role on the
field within this intermediate region must also be invariantvelocity field at a specified distance from the dynamic con-
with macroscopic geometry. Eliminating the region aroundtact line, providing an example of an additional constraint on
the dynamic contact line defined by’ <R, applying the applicability of the modulated-wedge flow solufias a
geometry-free boundary conditions féR) and the flow potential material boundary condition.
field onr’ =R, along with the usual boundary conditions at
all other interfaces, would permit solution for all the field ||, PROBLEM FORMULATION
variables and the free-surface shape in the outer region witrk\ Model 1
out specifying any of the details of the fluid physics in the™ ™
inner region. Since measurements made at an outer length The model, shown in Fig. 1, consists of a rectangular
scale cannot be used to uniquely delineate inner scaleavity of infinite depth, and lengtha, containing a pure,
physic€ and because of inherent difficulties associated withincompressible Newtonian liquid. The left sidewall moves
probing inner length scale physics experimentally, this apinto the liquid with a constant velocity). Gravity is ignored
proach would represent a significant advance in our ability tan the simulations, so that the outer length scale becomes the
predict key field variables in processes containing movingcontainer length,a. The upper boundary of the liquid,
contact lines. This general idea has been explored recently im’ (x"), is a free surface whose location is not knospri-
experiment®~'°and in simulationd®%2 ori, but is obtained as a part of the solution to the problem. A

In this paper, numerical simulations are used as a conhypothetical lower boundary restricts the computational do-
venient and powerful probing tool to examine the feasibility main. At this boundary, the flow is assumed unidirectional,
of applying the velocity and interface shape in the interme-with no net volumetric flow, and is sufficiently well removed
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N N
dynamic contact line
inviscid gas /
free surface, ¢ = B(r")
U
U
hypothetical hypothetical surface
surface
a FIG. 2. lllustration of the problem domain remaining after a regios R

from the dynamic contact line is removed. Hére<R<a. The free surface
FIG. 1. The model system. A flat plate enters into an infinitely deep bath ofshape is defined by=B(r').
liquid at speedJ. The distance from the moving plate to the stationary side
wall is a. The dynamic contact angle &, , the static contact angle &. A

hypothetical lower boundary, across which there is no net mass flux, re- — _ ; At ;
stricts the computational domain. The flow at this boundary is unidirec-Of 9=R;/(Ry;—Ry). The discretization of the flow domain

tional, and it is placed far enough away from the free surface so that itJF’"OWS .the technigues outlined in Bornsfdor axisymmet-
location has no impact on the meniscus shape. ric coating flows.

IlI. NUMERICAL SOLUTION TECHNIQUE

from the free surface so that any further displacement does The Galerkin Finite Element technique is used to dis-
not have any impact on the shape of the free boundary. Theretize the continuity and conservation of linear momentum
volume per unit width of the liquid within this computational equations, as well as all the boundary conditions. The kine-
domain isA. The static contact angle #. A constant dy- matic condition is used as distinguishedboundary condi-
namic contact anglép (not necessarily equal to the static tion to determine the location of the interface. The details
contact angleis used for these simulations. The code canleading to the appropriate weak forms of each of these equa-
easily handle more complicated variations. tions follow a standard procedure detailed elsewRere.

For a single component Newtonian liquid, the Reynolds ~ The liquid domain is subdivided inth, X N, elements.
number, Re, and the Capillary number, Ca, are the dimenVertical spines originating at the lower boundary of the com-
sionless groups characterizing the problem. Inertial effects
have been ignored in the simulations presented here, so that
Re=0. The full set of governing equations and boundary
conditions are presented in Appendix Mote: The influ-
ence of inertia on dynamic contact angles has been explored
recently for cases where Re<1 with Re>1, and Re=>1,
where the outer length scale is used in the definition oj Re.

=
-
2\

hypothetical

¥ y surface
T ; /

The truncated computational domain is illustrated in Fig. TR e s e
2. We apply the slope of the menisca&’' =R) = 6 along
with a variety of velocity conditions along the ar¢c=R
from the dynamic contact line for this set of calculations. We
assume no-slip along all solid—liquid interfaces, different
from the slip models utilized in Model 1 for the liquid ve-
locity along moving-solid—liquid interface.

B. Model 2

8

=

Rz

C. Model 3 FIG. 3. The model problem for the axisymmetric configuration. A rod of
radiusR; enters concentrically into a liquid in a container of rad®ysat a
For this set of simulations, illustrated in Fig. 3, a rod of velocity U. The upper boundary is a free surfatr’). The right wall is
radius R, enters concentrically into liquid in an infinitely Stationary. The dynamic contact anglefs, while the static contact angle
deep cylindrical cavity of radiu@z. We use the exponential is 6. The hypothetical lower boundary restricts the computational domain

. . . and is far enough away from the free surface so that its location has no
Sllp inner model, and compare the Ve|OCIty fieldRat 10L; impact on the free surface shape. The flow at this location is unidirectional,

with the modulated-wedge flow solutibfor different values  with no net mass flux across it.
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TABLE I. Maximum—minimum values of variables and their locations for successively refined meskeSx® 3, e=103, 5= 0p=45°.

Variable values

Mesh size Vx minimum Vy maximum Prinimum Pmaximum Pg
22x22 —4.9402x 1071 3.8826< 1071 —5.9068x 10° 2.8115¢10°8 2.4266x 107
23x23 —4.9493< 10 * 3.4580<10°* —8.2526x 10° 2.4589< 1072 2.4183< 107
25X 25 —4.9574x 1071 3.4382< 107! —1.3561x 10* 2.3645< 1072 2.410% 107
26X26 —4.9574x10° 1 3.4390< 107t —1.3550¢< 10* 2.3645< 103 2.4109 107

Location

Mesh size X y X y X y X y
22x22 0.1875 3.977 0.002 4.100 0.000 4.102 0.9375 0.000
23x23 0.1875 3.976 0.006 4.100 0.000 4.100 0.9375 0.000
25x25 0.1875 3.978 0.006 4.098 0.000 4.098 0.9375 0.000
26X 26 0.1875 3.978 0.006 4.098 0.000 4.098 0.9375 0.000

putational domain form element borders, while the ends ofocation and values ofvy minimum: Vy masimums Prinimums

these spines are used to represent the free surface. Element. ... and P, for successively refined meshesxx Ny
corner nodes are located as desired along the spines. Thep2x 22, 23x23, 25<25, and 2626). Our previous
velocity fields within each element are approximated bysimulationg® have clearly demonstrated that the mesh needs
nine-node Lagrangian biquadratic basis functions, while theéo be most refined in the vicinity of the dynamic contact line.
pressure field is approximated by four-node bilinear basishe successively finer grids are generated by dividing the
functions. As is customary in finite element practice, the bafirst row and column of elements in half. All the variables, as
sis functions are developed on a square parent element inygell as their locations, approach constant values as the mesh
(n,) Cartesian coordinate system. This parent element igs refined. We have used the 286 nonuniform mesh, illus-
transformed onto the deformed quadrilateral element in thérated in Figs. 4a) and 4b), for the computations. Our cal-
real domain through the use of an isoparametric mappingzulations on a 3%37 mesh, with refinement at several loca-

With this mapping, the free surface coincides with+1 for  tions in the computational domain, showed no change in
each element bordering the surface. Isoparametric mapping

also facilitates the evaluation of the unit normal and tangent
vectors?>?% The residuals are calculated using four-point
tensor product Gaussian quadrature.

The discretization results in as many nonlinear algebraic
equations as the number of unknowns. This algebraic equa-
tion set is solved by Newton’s method. The linear equation
set to be solved at theth Newton iteration is

J.cor,=—R,,, (3)
where
COM,=S,41— Sy (4)

HereR, is the vector containing the residuals, the elements
of S, consist of the solutions to the field variables and the
Jacobian matrixd,=dR,/JS,. The elements ofl, are ob-
tained numerically using a forward difference schemm.

At each Newton iteration, Eq(3) is solved by frontal
elimination?” The Newton iterations are stopped when the
L, andL.. norms ofR, are below 10°. Starting from initial
guesses where only the essential boundary conditions are
specified, along with a static meniscus shape and zero values
for all variables at all other nodes, convergence is typically
achieved within ten iterations.

IV. RESULTS AND DISCUSSION
A. Model 1

(b)

AS is CUStO_mary in numerical simulations O_f tranSpO_rtFlG. 4. (@) The 2626 mesh obtained from a converged solution. Ca
problems, we first demonstrate that the numerical solution. gos, gq= g,=45°, =102, (b) Expanded view of the mesh in the
presented is independent of mesh size. Table | illustrates thecinity of the dynamic contact line.
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either the maximum-—minimum values of the variables or 1
their locations from those obtained using thex2® mesh ool
and are thus not reported here.

The lower hypothetical boundary is displaced succes-
sively larger distances from the free boundétyrough ad- 07t
justment of the volume/widthd) until theL, andL., norms
of the free surface locations from two successive values of ;'
are <108, Our results indicate that this is achieved when >%s}
A=4a?, so that this distance is 4a in these simulations.

Since the meniscus slope at a distance’sf 10L; from
the dynamic contact line has been shown previously to be 931
independent of the outer length scale for@al?! we study 0zl
the flow field at this location to determine conditions over
which it is independent of macroscopic geometry. Our simu-
lations permit us to modulate the outer length scale, thus - - : - :
allowing us to examine this issue directly. Figuréa)55(c) (a) ° 10 2 ¢(dezorees) © % %
are plots of the velocity as a function of angular position
along the ar¢¢=0 is the solid. For the range of Ca studied,
the velocity field atr’ =R=10L; is independent o& for a
>1000;. However, fora=100;, we find the velocity
field is significantly different from that observed at the two
larger outer length scales. Since the flow field in the inter-
mediate region must be insensitive to changes in the macro-
scopic geometry, the locatidR=10L; is clearly outside the %0'
geometry-free region for this value af Interpreted in an- >
other way, these results show that the velocity rat
>10 2a does depend upon macroscopic geometry.

Figures 6a) and 6b) are comparisons of both the mag- o5r
nitude and direction of the numerically generated velocity

0.8

6F

0.4r

01

T T

0.8

7

0.6

fields along the ardR=10L; (a=1000L; in these simula- 0.4r

tions) to the modulated-wedge solutidnExcellent agree-

ment is maintained up to Ge0.01. Over this range of Ca, it 08 oo s 20 50 6 70 8 90
is apparent that the analytically determined flow field can , ¢ (degrees)

serve as an appropriate geometry-free boundary condition.
However, the agreement begins to deteriorate at@a. For
the modulated-wedge velocity field to properly describe the
flow, the interface curvature in the intermediate region
should be small, that isd@/d Inr)?><1, where the shape of
the interface is described by=pB(r). Figure 7 shows
(dg/dInr*)? versusr* for a range of Ca r*=r'/L; 0
=r/e€). Even at the highest value of Ca, the maximum value s
of this quantity is~0.05 for 5<r* <40, so that the low >
interface slope condition required for the validity of the
modulated-wedge solution appears to hold. Thus, the most
likely cause for this discrepancy is the inadequacy of the
leading order solution at this Ca.

0.9r

0.4r

B. Model 2

0.3 : v v . y Y y y
A pie-shaped region defined by =10L; from the dy- o o S A
namic contact line is removed from consideration. Table Il_ -~ Magnitude of velocity at’=10L, vs polar angles for differ-
illustrates the magnitudes and locations of maxima anQy; vaiues of the outer length scalés=fp=45°. (*** )a=100L, :
minima in the field variables for successively refined mesheg.+ + + +)a=100a,; (0000)a=2000;. (a) Ca=0.01, (b) Ca=0.1,
We have used the 2121 nonuniform mesh illustrated in (c) Ca=0.15.
Figures 8a) and 8b) for the computations carried out in this
truncated domain. While very refined grids in the immediategion here allows the use of coarser meshes. Note that with
vicinity of the moving contact line region become necessarythe exception 0pyinimum. all of the field variables have con-
in Model 1 to capture the large stresses in the immediateerged to approximately the same values as those in Model

vicinity of the dynamic contact line, elimination of this re- 1, providing a preliminary indication of the success of this
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FIG. 7. Interface curvature measu@d/d In r*)? vs distance* from dy-
* ¥ i namic contact line * =r'/Lj=r/e). (**** ) Ca=0.005; (++++) Ca

o =0.01;(O000) Ca=0.1; (ALAL) Ca=0.15.
0.14
012 well with that obtained using the modulated-wedge velocity
_— N field on the truncated domain defined by=10L;, provid-
$ o8t * * ing a strong indication of the validity of this modeling strat-
‘%'J.; 0.06F €ay. . . " . . .
> The kinematic condition is used as a distinguished
0.04 . boundary condition to determine the location of the free sur-
0.02 * x _ face. Atr’'=R, drawn from the apparent dynamic contact
ologt ® © Oi x line, the meniscus slopéy replaces the kinematic condition
TR R * in order to avoid overspecifying the problem. Because of
-0.02r g ] local changes in interface curvature, the position of this ap-
-0.04_ R e e S parent contact I_ine becomes in_creasingly different from the.
(b) o (degrees) true one as Ca increases. One important consequence of this

displacement is illustrated in Table IIl, which shows the nor-
FIG. 6. Difference of thé¢a) magnitude andb) direction, of the velocitiesat  mal component of velocity at the intersection of the afc
r'=10L; between the simulation and the modulated-wedge velocity field. = R and the free surface. The kinematic condition is vio-
f(ffof.)&:xixxl)oc;:gf (9*?":*4)5;a(=<)0?.500) Ca=0005i(++++) Ca  |ated, with the magnitude of the normal velocity increasing
o o o with increasing Ca. In order to apply the modulated-wedge
boundary condition, it is necessary to know the location of
method for modeling dynamic wetting processes. The disthe true dynamic contact line. The violation of the kinematic
crepancy fopminimum IS because this value is achieved at thecondition in this model is a consequence of the fact that the
dynamic contact line for the full domain, a point which is not arc r’ =R has been constructed from the apparent dynamic
part of the computational domain in this problem. contact line. If Moffat's wedge flow solutiéf constructed
The meniscus slope boundary conditin 6 is applied  from that same point is used as a boundary conditfain,
at the point of intersection of the arc with the free surfacewould satisfy the kinematic condition, but it would not prop-
The modulated-weddevelocity field is applied as an inflow/ erly account for viscous bending effects in the intermediate
outflow condition along the arc’=R(R=10 2a) drawn region, an effect that becomes more important as Ca in-
from the point of intersection of the tangent to the free surcreases. Direct experimental measurements of this velocity
face atR and the moving solidthis location is called the field could also be used as an input in these simulations. If
apparent dynamic contact lin€The no-slip condition is ap- the dynamic contact line can be located successfully, this
plied everywhere along the solid—liquid boundaries. The revelocity field would be specified at a distance from the con-
sulting interface slopes are compared to those using the exact line equal to some fraction of the outer length scale, and
ponential slip inner model in Figures(@-9(d). Interface it would satisfy the kinematic condition. The simulations
slopes match well up to Ga0.1 but discrepancies set in at would proceed without any problems. Use of the analytical
Ca=0.15. Interface profiles calculated using another innemodulated-wedge flow solution as a boundary condition for
model shown in Appendix A foe=10"2 (thereforer’ also  the simulations is therefore restricted, and underscores the
equals 10;) were indistinguishable from those using the ex-need for direct experimental measurements.
ponential slip inner model. Thus, for €8.1, two different The unique capacity of numerical simulations is now
inner slip models produce free surface shapes that compasexploited to determine how sensitive the free boundary
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TABLE Il. Maximum—minimum values of variables and their locations for successively refined mébhesated domain Ca=5x 103, R=10?a,
Or= 05=45°.

Variable values

Mesh size Vx minimum Vy maximum Pminimum I:)maximum Pg
18x18 —4.9283x 107! 3.4012x10°* —4.047K% 107 7.2035< 1072 2.4335< 107
20x20 —4.9324x10°* 3.4613<10°* —4.0919K 107 1.3723< 10 2 2.4330< 107
21x21 —4.9327 107t 3.4711x 107t —4.0605x 107 9.8965< 1072 2.4329 107
23%x23 —4.9327% 10t 3.4717 10°* —4.0569% 107 1.0140x 102 2.432%K 107
25X 25 —4.9327 107 ¢ 3.4717x 107t —4.0564x 107 1.0096x 102 2.4329% 107

Location

Mesh size X y X y X y X y
18x18 0.1875 3.977 0.0076 4.100 0.0076 4.096 0.9375 0.000
20x20 0.1875 3.976 0.0098 4.100 0.0076 4.096 0.9375 0.000
21x21 0.1875 3.978 0.0098 4.098 0.0076  4.096 0.9375 0.000
23x23 0.1875 3.978 0.0098 4.098 0.0076 4.096 0.9375 0.000
25X 25 0.1875 3.978 0.0098 4.098 0.0076  4.096 0.9375 0.000

shapes are to different velocities prescribed raE=R. conditions [Egs. (5)—(7)] along the arcr’=R=10 2a.
Clearly, such a “sensitivity” test can only be performed us- These have been chosen to satisfy no net mass flux across the
ing computations, since there is no way to deliberately proarc r’=R and no-slip at the walls, but otherwise lack any
duce prescribed velocities at specific locations within thephysical basis, and are illustrated in Fig. 10.

liquid in experiments. These computations can aid experi-

mentalists in determining the required level of accuracy for YP€ (1) V4=0, vi=codmX$/bg], O0<d=<br,

velocity measurements in anticipation of their use as bound- ©)
ary conditions. We have applied three new velocity boundaryrype (2) Vvy=0, v,=co$§2XmX¢/f], O=d=0q
(6)

Type (3) V¢:O' Vr=1—[4>< ¢/0R], ¢$ 0R/41

1)

V,=SiAX 7X 0], Opl4< p<30ml4, @)

VWY

—1] Vr:3_[4>< (ZS/HR], 30R/4<¢$ ﬁR.

The resulting interface slopes are compared with those
obtained using the modulated-wedge velocity boundary con-
dition atr’ =R, for a range of Ca, and are shown in Figs.
11(a)—11(d). For Ca<0.1, the interface profiles produced
from each of these new models are indistinguishable from
S that using the modulated-wedge flow field at the scale of the
plots. Therefore, for this Ca regime and for this resolution, it
is not necessary to know the exact form of the velocity
‘ boundary condition along the ar¢=R in order to produce
(a) “accurate” meniscus shapes. Considering the amount of ad-
ditional effort that must be expended to gather velocity in-
formation, this type of computation can lead to important
] savings when modeling over a specific parameter range. Sig-
o nificant systematic deviations can, however, be observed at
higher Ca, so that for Ca0.1, precise flow field boundary
conditions must be utilized.

111

1

1

C. Model 3

As was done and reported for the flat plate geometry,
extensive computations are first completed to identify condi-
(b) tions where the solution is independent of mesh size, and the
lower hypothetical boundary is located sufficiently far away

FIG. 8. (@ The 21x21 mesh used for simulations in a domain where a ) 4o free surface. A 2626 mesh, identical to that used
regionr’=R=10 “a from an apparent dynamic contact line is removed .

from the computational domain. €#.005,0s= 6= 45°. (b) An expanded N the ﬂ_at plate geometry proved to be sufficient in these
view of the mesh showing the truncated region. calculations. The outer length scae-R,—R;. The lower
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FIG. 9. Comparisons of interface slopes from the simulations using an exponential slip moderith3(OOOO) and simulations using the modulated
wedge velocity fieldRef. 1) as a boundary condition along the are=R=10L;(+ + + +). The interface slop#®g is the best fit value obtained from our
previous simulations(Ref. 23. The variabler* =r'/L; . (a) Ca=0.005,(b) Ca=0.01,(c) Ca=0.1, (d) Ca=0.15.

boundary was placed approximatelyRs(-R;) away from 2 ' ' ' ' ' ' ; ' '
the free surface. This distance is adjusted by varying the total
volume of liquid in the annular space.

The flow field is axisymmetric and two-dimensional in
the r'—y’ plane. The key results are shown in Fig. 12,
where the difference in the magnitudes as well as directions
of the velocities atr’=R=10L; between the modulated-
wedge flow solutioh and the numerical calculation for Ca > o
=0.005, are shown for various values &f For 5>1, the
planar modulated-wedge solution mimics the calculated

151 k

-0.5

-1
TABLE Ill. Normal component of velocity at the point of intersection of the

arcr’=R=10"2a with the free surface.

Ca n.v
0.005 0.011
0.01 0.0191
0.1 0.0783
0.15 0.0846

-1.5F E
- . . . L : . . . .
0 5 10 15 20 25 30 35 40 45 50
¢ (degrees)
FIG. 10. Plots of the radial component of velocity vs polar angier the
different velocity fields used as boundary conditions 'at 10L; . (———-)

Type 1;(---+) Type 2;(--—) Type 3;(—) Cox!
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FIG. 11. Comparisons of simulated interface slopes using the three hypothetical velocity boundary conditions with that using the modulateldaitgdge ve
field, all applied atr'=R=10"2a. (++++) Type 1;(XXXX) Type 2;(*** ) Type 3; (OOOO) Modulated wedge(a) Ca=0.005, (b) Ca=0.01, (c)
Ca=0.1, and(d) Ca=0.15.

velocity field. However, the discrepancy becomes very eviues of Ca is not a result of a violation of the low curvature
dent at6=0.1, where the role of inner rod curvature on the assumption, but is most likely because the solution to lowest
flow field is Signiﬁcant. Thes value at which deviations from order in Cais inadequate_ The prob]em is modeled by elimi-
the planar modulated-wedge flow field set in are depender{ating a region defined by’ =10 2a around the dynamic
on the choice oR_as We_zll as on Ca. Thls_ calculation is an .oniact line, and applying velocity and interface slope
example of how simulations can be exploited to put a bounq)oundary conditions along this line. When the modulated-
on the use of the modulated-wedge flow velocity fiedg a Lo . "
geometry-independent boundary condition. wedge solution is used as a velocity boundary condition
along the arc, the resulting interface shapes were found to be
in good agreement with those obtained using the exponential
V. CONCLUSIONS slip inner model for Ca0.1. Computations completed using
a different slip model produced no difference in interface

Numerical simulations of a plate being immersed into anshapes, establishing the viability of using the truncated do-

infinitely deep liquid bath have been utilized to test a strat-" . . -
ain to model wetting processes. Our study indicated a rela-

egy aimed at providing geometry-free boundary conditioné],1 . o ,
for the simulation of dynamic wetting processes. The flowtive insensitivity of the meniscus shape to the nature of the

field along an arc of radius 19 drawn from the dynamic velocity boundary conditions applied on the truncated do-
contact line is compared to the prediction from themain for Ca<0.1. Using computations in an axisymmetric
modulated-wedge solution. The two velocity fields are ingeometry, we identify conditions where the planar
good agreement for G&D.1. The discrepancy at higher val- modulated-wedge flow velocity field breaks down because of
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X107 APPENDIX A: GOVERNING EQUATIONS
‘ ' ' ' ‘ ’ ' ' ‘ AND BOUNDARY CONDITIONS

1. Problem 1

A. Governing equations

-
T

All lengths are scaled witla, the container length, ve-
0 locities with the plate speed), and pressure and viscous

\S\@- stresses withuU/a. All variables presented here are dimen-
sionless.

AV
mag

2ot

T B. Continuity

V.v=0. (A1)

Here v(X,y) =v(X,y)e+Vv(x,y)g,, wheree, and e, are
unit vectors in thex andy directions, respectively.

_4F

-5+

s

_7 . . . . . . . . L
0 5 10 15 20 25 30 35 40 45 50

(a) ¢ (degrees) C. Conservation of momentum (with Re =0)
S V.T=0. (A2)
0025+ 1 The stress tensof,= — pl + 7, wherel is the identity tensor,
andp is the liquid pressure. The viscous stress tensor, assum-
0.02p ing a Newtonian rheology, is of the form=[V,+(V,)"].
& 0.015 ..
8 D. Boundary conditions
#%% 0015 1 No slip and no penetration of liquid on all stationary
g solid walls
0.0051 1
///@\N v=0. a3)
0 At the free surfacey=h(x)
~0.005 | . n-T=(1/Ca 2Hn—nPy, (A4)
~0.01 1 1 1 ) 2 L L L L n-v=_0. (AS)
0 5 10 15 20 25 30 35 40 45 50
(b) ¢ (degrees) EquationgA4) and(A5) represent the stress balance and the

FIG. 12. Comparison of théa) magnitude andb) direction, of the veloci- kinematic conditions, reSpeCt.lve.ly' Hene,is t.he unit out-
ties atr’=10L; from the simulation in an axisymmetric geometry with the Ward normal fro_m the free |Iq.UId surfacéi is the mean
modulated-wedge velocity fiel(Ref. 1. e=5x10"*, 9s=60p=45°, Ca  curvature of the interface, arig}; is the unknown pressure in
=0.005, 6=R;/(R,~Ry). (OOOO) Flat plate,5>1; (XXXX) é=1;  the surrounding inviscid phase, relative to an arbitrary cho-
*hKK . .
() 6=0.1. sen datum pressure at the lower right hand corner of the
computational domain.
The contact angles are specified at the contact lines, so

that
azimuthgl curvature effects, pL_Jtting anqther useful bound on . ..n=cog#). (AB)
the applicability of the analytical solution as a geometry- . ) ) ) )
independent boundary condition. At the dynamic contact line, the microscopic dynamic con-

tact angled= 6 and at the static contact liné= 6g.
Along the moving plate, the liquid speed is given by a
slip model. We have investigated two different slip models:

Exponential slip:
vy=—[1—exp—(h(0)—y)/e}]. (A7)

We thank E. RameS. Garoff, and M. Rivero-Hudec for Another modeP
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supported in part by the Universities Space Research Asso- 'Y~ ~{(h(©) =)/ I[1+{(h(0)~y)/e}’],  (ATb)
ciation through the National Center for Microgravity Re- whereh(x) is the dimensionless height of free surface and
search, and Grant No. NAG-3-2129 from the NASA Lewis e=L;/a. These models directly produee=0 at the contact
Research Center. Computations were carried out at the Pittbne. The key difference between them is how this limiting
burgh Supercomputer Center and the San Diego Supercomelocity is approached.
puter Center. At the hypothetical lower surfacg,=0
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v,=0, (A8)  a;=6%In6—(1+6)%n(1+ ),

Vy=—Vo(3Xx—1)(x—1), (A9) ag=1+2In(1+5).
wherev, is the dimensionless liquid speed atY)=(0,0), In order to account for the additional curvature along the
and is defined using the appropriate slip model, @ga) or ~ azimuthal direction, special “pie-shaped” elements must be
(ATb). chosen for the computations, and the development of the

The mass of liquid within the computational domain residuals follows the technigues outlined in Bornsitie.
must be conserved. For a liquid of constant density, this The volume constraint becomes
reduces to the volume constraint, 145 vV
N A waa h(r)rdrzgg. (A14)
f h(x)dx= —. (A10)
0 a Here,V is the volume of liquid in the annular space defined
by the computational domain.
2. Problem 2
dAPPENDIX B: MODULATED WEDGE FLOW

For model problem 2, the inner region is eliminated an SOLUTION

additional boundary conditions are required alorgR. The
meniscus slopdy is applied as a boundary condition on the The modulated-wedge solution developed by €dg-
free surface at=R, replacing the true microscopic dynamic scribes the velocity field in the intermediate region @)dn
contact anglefp . In cylindrical polar coordinates, the ve- Ca, as Ca»0, and is given by

locity boundary conditions applied along the are;R, have V.(1.: B)~[ — Sin B CosB(Cosd— ¢ Sin )

the general form
—SirtB(Sin ¢+ ¢ Cosp)+BCosp]/A,  (B1)

V(r,@)=v(r,¢;B)e+v,(r,¢;8)eys, (A11)
where (,¢) is the polar coordinate system with its origin at Vo(r. ¢ B)~[¢ Cos¢ Sin B Cosp+ ¢ Sin ¢ Sir8
the dynamic contact line. The moving solid is ¢+0, and —BSin¢]/A—Ca2 SinB)[¢ Cos¢(SinB
¢=p(r) is the location of the interface. The no-slip bound- ) _
ary condition is applied all along the solid—liquid interface X Cosf—Cos )+ ¢ Sin(Sir? g Cos3
within the computational domain. This truncated domain —2BSinBCosp+Sin* g+Sir? B)
model allows us to examine how a variety of boundary con-
ditions atr =R affect free surface shapes. +Sing(8 Cos B—SinBCosp)]/A®, (B2

where A=B-sinBcosB and ¢=p3(r) represents the free

3. Problem 3 surface.
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