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Numerical investigation of boundary conditions for moving contact
line problems

Sandesh Somalinga and Arijit Bosea)

Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881

~Received 5 June 1998; accepted 7 October 1999!

When boundary conditions arising from the usual hydrodynamic assumptions are applied, analyses
of dynamic wetting processes lead to a well-known nonintegrable stress singularity at the dynamic
contact line, necessitating new ways to model this problem. In this paper, numerical simulations for
a set of representative problems are used to explore the possibility of providingmaterialboundary
conditions for predictive models of inertialess moving contact line processes. The calculations
reveal that up to Capillary number Ca50.15, the velocity along an arc of radius 10Li (Li is an inner,
microscopic length scale! from the dynamic contact line is independent of the macroscopic length
scalea for a.103Li , and compares well to the leading order analytical ‘‘modulated-wedge’’ flow
field @R. G. Cox, J. Fluid Mech.168, 169 ~1986!# for Capillary number Ca,0.1. Systematic
deviations between the numerical and analytical velocity field occur for 0.1,Ca,0.15, caused by
the inadequacy of the leading order analytical solution over this range of Ca. Meniscus shapes
produced from calculations in a truncated domain, where the modulated-wedge velocity field@R. G.
Cox, J. Fluid Mech.168, 169 ~1986!# is used as a boundary condition along an arc of radiusR
51022a from the dynamic contact line, agree well with those using two inner slip models for
Ca,0.1, with a breakdown at higher Ca. Computations in a cylindrical geometry reveal the role of
azimuthal curvature effects on velocity profiles in the vicinity of dynamic contact lines. These
calculations show that over an appropriate range of Ca, the velocity field and the meniscus slope in
a geometry-independent region can potentially serve as material boundary conditions for models of
processes containing dynamic contact lines. ©2000 American Institute of Physics.
@S1070-6631~00!00402-5#

I. INTRODUCTION

Dynamic wetting phenomena, where one liquid spreads
across a solid surface while displacing a second immiscible
fluid, are ubiquitous in both nature and in industrial pro-
cesses. Some examples include spreading of insecticides on
plants, coating of photographic film, movement of water
through interstitial spaces within filter paper fibers, move-
ment of rain drops on windows, cavitation, and flotation of
ores during recovery of metals. Common to all of these is the
presence of a moving contact line, at the three-phase inter-
section, and a liquid–fluid boundary extending from this
point. The shape of this surface has an important impact on
the behavior of these processes. For a given set of materials,
moving contact lines can be present in processes that have a
range of different macroscopic geometries.

A geometry-independent set of boundary conditions for
models ofdynamicwetting processes are crucial for a robust
evaluation of all the field variables and free-surface shapes,
but this produces critical challenges. For a pure liquid, the
customary hydrodynamic assumptions lead to a multivalued
velocity field at the dynamic contact line.2 If the liquid is
Newtonian and the solid is nondeformable, this implies an
infinite force exerted by the liquid on the solid. Besides its

aphysical nature, one consequence of this force divergence is
an unbounded interface curvature at the dynamic contact
line, resulting in the inability to specify a ‘‘true’’ dynamic
contact angle. Because this angle serves as a boundary con-
dition for the differential equation governing the shape of the
liquid–fluid interface, an ill-posed problem results. The lack
of a materialboundary condition for the differential equation
governing the interface shape represents a key obstacle to
development of predictive models of dynamic wetting pro-
cesses. This limitation cannot be overcome by replacing the
true dynamic contact angle by an ‘‘apparent’’ one, based
upon extrapolation of a static-like meniscus to a putative
contact line, because these apparent contact angles depend
upon macroscopic geometry.2,3 Thus, measurements made in
one configuration cannot, in principle, be used in another,
severely restricting the usefulness of this approach.

The general strategy for overcoming this problem can be
understood by considering the forces that dominate over
three different length scales that characterize the flow. In the
outer region, characterized by a ‘‘macroscopic’’ length scale
‘‘ a’’ ~the largest length over which surface tension forces are
important!, all the usual hydrodynamic assumptions are ap-
plicable. For Ca!1 ~the Capillary number Ca5mU/g,
whereU is a characteristic liquid speed,m the liquid viscos-
ity and g its surface tension!, viscous stresses in the outer
region are small compared to surface tension forces, the in-
terface shape is static-like to lowest order in Ca and strongly
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dependent on geometry. As the dynamic contact line is ap-
proached, viscous forces grow, and the meniscus shape in
this intermediate region is the result of a balance oflocal
viscous forces and surface tension. Because of the local na-
ture of the flow in this region, the interface shape is indepen-
dent of macroscopic geometry. Within an ‘‘inner’’ region in
the vicinity of the dynamic contact line, of characteristic di-
mensionsLi , classical hydrodynamics breaks down, and
new physics governs fluid behavior. Most common is the
assumption of ‘‘slip’’ between the liquid and solid, thereby
removing the source of the multivalued velocity at the dy-
namic contact line;4 other postulates include evaporation and
condensation at the contact line,5 surface diffusion6 and
modified rheology.7 To date, no direct identification of any
inner scale mechanism has been made; therefore, its nature
remains a matter of speculation. Indirect experiments indi-
cate that the inner scale physics is quite complex, and may
arise from multiple mechanisms.8

For the double limit Ca→0, e→0, with Ca ln(e21) of
O(1), wheree5Li /a, singular perturbation analysis1 of the
resulting boundary value problem to lowest order in Ca, as-
suming that the displaced fluid has zero viscosity, yields a
solution for the interface shape~all primed variables are di-
mensional! in the intermediate region of the form

u intermediate~r 8!5g21@g~uR!1Ca ln~r 8/R!#, ~1!

where

g~u!5E
0

u f2Cosf Sinf

2 Sinf
df. ~2!

u intermediate(r 8) is the angle between the moving solid and
the tangent to the liquid free surface~the meniscus slope! in
the intermediate region at a distancer 8 from the dynamic
contact line, anduR5u(r 85R), wherer 85R is a location
within the intermediate region. The geometry-free nature of
Eq. ~1!, that is, its lack of dependence on the outer length
scale a, suggests that it can potentially form a material
boundary condition for the outer problem. To be consistent
with the dominant role oflocal viscous forces, the velocity
field within this intermediate region must also be invariant
with macroscopic geometry. Eliminating the region around
the dynamic contact line defined byr 8,R, applying
geometry-free boundary conditions foru(R) and the flow
field on r 85R, along with the usual boundary conditions at
all other interfaces, would permit solution for all the field
variables and the free-surface shape in the outer region with-
out specifying any of the details of the fluid physics in the
inner region. Since measurements made at an outer length
scale cannot be used to uniquely delineate inner scale
physics9 and because of inherent difficulties associated with
probing inner length scale physics experimentally, this ap-
proach would represent a significant advance in our ability to
predict key field variables in processes containing moving
contact lines. This general idea has been explored recently in
experiments10–15 and in simulations.15–22

In this paper, numerical simulations are used as a con-
venient and powerful probing tool to examine the feasibility
of applying the velocity and interface shape in the interme-

diate region as transferable~between different macroscopic
geometries! boundary conditions for models of processes
containing dynamic contact lines. Simulations provide the
ability to independently change boundary conditions~or keep
them fixed! and controlling parameters in ways that are not
possible in experiments. Because calculated meniscus shapes
are not subject to ‘‘experimental’’ errors, interface slopes
accurate to a specified tolerance that is well beyond currently
available experimental techniques can be obtained over the
whole computational domain, including, when necessary, the
immediate vicinity of the dynamic contact line. This feature
allows a refined evaluation of the geometry-independence of
any field variables or the meniscus shape. No attempt is
made to identify inner scale physics. However, if inner mod-
els are available, either through analyses or experiments, in
the form mathematical relationships or discrete data, they
can be incorporated easily into the calculations.

The Galerkin finite element method is used to solve for
interface shapes and flow fields for a set of three model prob-
lems. The first consists of a flat plate entering a bath of liquid
in a deep rectangular cavity. We use two different inner
models and examine the flow field at a specified distance
from the dynamic contact line over a range of Ca and outer
length scales. We compare our solutions to those from Cox
~referred to as the modulated-wedge velocity field!,1 in order
to determine the limits of applicability for the analytical so-
lution, and identify the parameter space over which that so-
lution can be used as a boundary condition. For the second
problem, the computational domain is truncated by an arc of
radiusR from the dynamic contact line, withLi!R!a, es-
sentially eliminating the inner region from the simulation.
Modeling in this domain requires the specification of veloc-
ity inflow–outflow boundary conditions along the arc, and
we examine the consequences of those conditions on menis-
cus shapes. In the third problem, a rod enters concentrically
into a liquid in a deepcylindrical cavity. This axisymmetric
configuration introduces an additional macroscopic geomet-
ric parameter,d, defined as the ratio of the rod radius to the
annular gap width. We identify conditions under which this
geometric parameter starts playing a measurable role on the
velocity field at a specified distance from the dynamic con-
tact line, providing an example of an additional constraint on
the applicability of the modulated-wedge flow solution1 as a
potential material boundary condition.

II. PROBLEM FORMULATION

A. Model 1

The model, shown in Fig. 1, consists of a rectangular
cavity of infinite depth, and length,a, containing a pure,
incompressible Newtonian liquid. The left sidewall moves
into the liquid with a constant velocity,U. Gravity is ignored
in the simulations, so that the outer length scale becomes the
container length,a. The upper boundary of the liquid,
h8(x8), is a free surface whose location is not knowna pri-
ori, but is obtained as a part of the solution to the problem. A
hypothetical lower boundary restricts the computational do-
main. At this boundary, the flow is assumed unidirectional,
with no net volumetric flow, and is sufficiently well removed
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from the free surface so that any further displacement does
not have any impact on the shape of the free boundary. The
volume per unit width of the liquid within this computational
domain isA. The static contact angle isuS . A constant dy-
namic contact angleuD ~not necessarily equal to the static
contact angle! is used for these simulations. The code can
easily handle more complicated variations.

For a single component Newtonian liquid, the Reynolds
number, Re, and the Capillary number, Ca, are the dimen-
sionless groups characterizing the problem. Inertial effects
have been ignored in the simulations presented here, so that
Re50. The full set of governing equations and boundary
conditions are presented in Appendix A.~Note: The influ-
ence of inertia on dynamic contact angles has been explored
recently23 for cases where Ree!1 with Re@1, and Ree@1,
where the outer length scale is used in the definition of Re.!

B. Model 2

The truncated computational domain is illustrated in Fig.
2. We apply the slope of the meniscusu(r 85R)5uR along
with a variety of velocity conditions along the arcr 85R
from the dynamic contact line for this set of calculations. We
assume no-slip along all solid–liquid interfaces, different
from the slip models utilized in Model 1 for the liquid ve-
locity along moving-solid–liquid interface.

C. Model 3

For this set of simulations, illustrated in Fig. 3, a rod of
radius R1 enters concentrically into liquid in an infinitely
deep cylindrical cavity of radiusR2 . We use the exponential
slip inner model, and compare the velocity field atR510Li

with the modulated-wedge flow solution1 for different values

of d5R1 /(R22R1). The discretization of the flow domain
follows the techniques outlined in Bornside24 for axisymmet-
ric coating flows.

III. NUMERICAL SOLUTION TECHNIQUE

The Galerkin Finite Element technique is used to dis-
cretize the continuity and conservation of linear momentum
equations, as well as all the boundary conditions. The kine-
matic condition is used as adistinguishedboundary condi-
tion to determine the location of the interface. The details
leading to the appropriate weak forms of each of these equa-
tions follow a standard procedure detailed elsewhere.25

The liquid domain is subdivided intoNx3Ny elements.
Vertical spines originating at the lower boundary of the com-

FIG. 1. The model system. A flat plate enters into an infinitely deep bath of
liquid at speedU. The distance from the moving plate to the stationary side
wall is a. The dynamic contact angle isuD , the static contact angle isuS . A
hypothetical lower boundary, across which there is no net mass flux, re-
stricts the computational domain. The flow at this boundary is unidirec-
tional, and it is placed far enough away from the free surface so that its
location has no impact on the meniscus shape.

FIG. 2. Illustration of the problem domain remaining after a regionr 85R
from the dynamic contact line is removed. HereLi!R!a. The free surface
shape is defined byf5b(r 8).

FIG. 3. The model problem for the axisymmetric configuration. A rod of
radiusR1 enters concentrically into a liquid in a container of radiusR2 at a
velocity U. The upper boundary is a free surfaceh8(r 8). The right wall is
stationary. The dynamic contact angle isuD , while the static contact angle
is uS . The hypothetical lower boundary restricts the computational domain
and is far enough away from the free surface so that its location has no
impact on the free surface shape. The flow at this location is unidirectional,
with no net mass flux across it.
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putational domain form element borders, while the ends of
these spines are used to represent the free surface. Element
corner nodes are located as desired along the spines. The
velocity fields within each element are approximated by
nine-node Lagrangian biquadratic basis functions, while the
pressure field is approximated by four-node bilinear basis
functions. As is customary in finite element practice, the ba-
sis functions are developed on a square parent element in a
~h,j! Cartesian coordinate system. This parent element is
transformed onto the deformed quadrilateral element in the
real domain through the use of an isoparametric mapping.
With this mapping, the free surface coincides withj511 for
each element bordering the surface. Isoparametric mapping
also facilitates the evaluation of the unit normal and tangent
vectors.25,26 The residuals are calculated using four-point
tensor product Gaussian quadrature.

The discretization results in as many nonlinear algebraic
equations as the number of unknowns. This algebraic equa-
tion set is solved by Newton’s method. The linear equation
set to be solved at thenth Newton iteration is

J% ncorrn52R̄n , ~3!

where

corrn5S̄n112S̄n . ~4!

Here R̄n is the vector containing the residuals, the elements
of S̄n consist of the solutions to the field variables and the
Jacobian matrixJ%n5]R̄n /]S̄n. The elements ofJ%n are ob-
tained numerically using a forward difference scheme.25,26

At each Newton iteration, Eq.~3! is solved by frontal
elimination.27 The Newton iterations are stopped when the
L2 andL` norms ofR̄n are below 1026. Starting from initial
guesses where only the essential boundary conditions are
specified, along with a static meniscus shape and zero values
for all variables at all other nodes, convergence is typically
achieved within ten iterations.

IV. RESULTS AND DISCUSSION

A. Model 1

As is customary in numerical simulations of transport
problems, we first demonstrate that the numerical solution
presented is independent of mesh size. Table I illustrates the

location and values ofvx minimum, vy maximum, pminimum,
pmaximum, andPg for successively refined meshes (Nx3Ny
522322, 23323, 25325, and 26326!. Our previous
simulations26 have clearly demonstrated that the mesh needs
to be most refined in the vicinity of the dynamic contact line.
The successively finer grids are generated by dividing the
first row and column of elements in half. All the variables, as
well as their locations, approach constant values as the mesh
is refined. We have used the 26326 nonuniform mesh, illus-
trated in Figs. 4~a! and 4~b!, for the computations. Our cal-
culations on a 37337 mesh, with refinement at several loca-
tions in the computational domain, showed no change in

FIG. 4. ~a! The 26326 mesh obtained from a converged solution. Ca
50.005, uS5uD545°, e51023. ~b! Expanded view of the mesh in the
vicinity of the dynamic contact line.

TABLE I. Maximum–minimum values of variables and their locations for successively refined meshes. Ca5531023, e51023, uS5uD545°.

Variable values
Mesh size vx minimum vy maximum pminimum pmaximum Pg

22322 24.940231021 3.882631021 25.90683103 2.811531023 2.42663102

23323 24.949331021 3.458031021 28.25263103 2.458931023 2.41833102

25325 24.957431021 3.438231021 21.35613104 2.364531023 2.41093102

26326 24.957431021 3.439031021 21.35503104 2.364531023 2.41093102

Location
Mesh size x y x y x y x y

22322 0.1875 3.977 0.002 4.100 0.000 4.102 0.9375 0.000
23323 0.1875 3.976 0.006 4.100 0.000 4.100 0.9375 0.000
25325 0.1875 3.978 0.006 4.098 0.000 4.098 0.9375 0.000
26326 0.1875 3.978 0.006 4.098 0.000 4.098 0.9375 0.000
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either the maximum–minimum values of the variables or
their locations from those obtained using the 26326 mesh
and are thus not reported here.

The lower hypothetical boundary is displaced succes-
sively larger distances from the free boundary~through ad-
justment of the volume/width,A! until the L2 andL` norms
of the free surface locations from two successive values ofA
are ,1028. Our results indicate that this is achieved when
A54a2, so that this distance is;4a in these simulations.

Since the meniscus slope at a distance ofr 8510Li from
the dynamic contact line has been shown previously to be
independent of the outer length scale for Ca,0.1,21 we study
the flow field at this location to determine conditions over
which it is independent of macroscopic geometry. Our simu-
lations permit us to modulate the outer length scale, thus
allowing us to examine this issue directly. Figures 5~a!–5~c!
are plots of the velocity as a function of angular position
along the arc~f50 is the solid!. For the range of Ca studied,
the velocity field atr 85R510Li is independent ofa for a
.1000Li . However, for a5100Li , we find the velocity
field is significantly different from that observed at the two
larger outer length scales. Since the flow field in the inter-
mediate region must be insensitive to changes in the macro-
scopic geometry, the locationR510Li is clearly outside the
geometry-free region for this value ofa. Interpreted in an-
other way, these results show that the velocity atr 8
.1022a does depend upon macroscopic geometry.

Figures 6~a! and 6~b! are comparisons of both the mag-
nitude and direction of the numerically generated velocity
fields along the arcR510Li (a51000Li in these simula-
tions! to the modulated-wedge solution.1 Excellent agree-
ment is maintained up to Ca50.01. Over this range of Ca, it
is apparent that the analytically determined flow field can
serve as an appropriate geometry-free boundary condition.
However, the agreement begins to deteriorate at Ca50.1. For
the modulated-wedge velocity field to properly describe the
flow, the interface curvature in the intermediate region
should be small, that is, (db/d ln r)2!1, where the shape of
the interface is described byf5b(r ). Figure 7 shows
(db/d ln r* )2 versus r * for a range of Ca (r * 5r 8/Li

5r /e). Even at the highest value of Ca, the maximum value
of this quantity is;0.05 for 5,r * ,40, so that the low
interface slope condition required for the validity of the
modulated-wedge solution appears to hold. Thus, the most
likely cause for this discrepancy is the inadequacy of the
leading order solution at this Ca.

B. Model 2

A pie-shaped region defined byr 8510Li from the dy-
namic contact line is removed from consideration. Table II
illustrates the magnitudes and locations of maxima and
minima in the field variables for successively refined meshes.
We have used the 21321 nonuniform mesh illustrated in
Figures 8~a! and 8~b! for the computations carried out in this
truncated domain. While very refined grids in the immediate
vicinity of the moving contact line region become necessary
in Model 1 to capture the large stresses in the immediate
vicinity of the dynamic contact line, elimination of this re-

gion here allows the use of coarser meshes. Note that with
the exception ofpminimum, all of the field variables have con-
verged to approximately the same values as those in Model
1, providing a preliminary indication of the success of this

FIG. 5. Magnitude of velocity atr 8510Li vs polar anglef for differ-
ent values of the outer length scale.uS5uD545°. (**** )a5100Li ;
(1111)a51000Li ; (ssss)a52000Li . ~a! Ca50.01, ~b! Ca50.1,
~c! Ca50.15.
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method for modeling dynamic wetting processes. The dis-
crepancy forpminimum is because this value is achieved at the
dynamic contact line for the full domain, a point which is not
part of the computational domain in this problem.

The meniscus slope boundary conditionu5uR is applied
at the point of intersection of the arc with the free surface.
The modulated-wedge1 velocity field is applied as an inflow/
outflow condition along the arcr 85R(R51022a) drawn
from the point of intersection of the tangent to the free sur-
face atR and the moving solid~this location is called the
apparent dynamic contact line!. The no-slip condition is ap-
plied everywhere along the solid–liquid boundaries. The re-
sulting interface slopes are compared to those using the ex-
ponential slip inner model in Figures 9~a!–9~d!. Interface
slopes match well up to Ca50.1 but discrepancies set in at
Ca50.15. Interface profiles calculated using another inner
model shown in Appendix A fore51023 ~therefore,r 8 also
equals 10Li! were indistinguishable from those using the ex-
ponential slip inner model. Thus, for Ca,0.1, two different
inner slip models produce free surface shapes that compare

well with that obtained using the modulated-wedge velocity
field on the truncated domain defined byr 8510Li , provid-
ing a strong indication of the validity of this modeling strat-
egy.

The kinematic condition is used as a distinguished
boundary condition to determine the location of the free sur-
face. At r 85R, drawn from the apparent dynamic contact
line, the meniscus slopeuR replaces the kinematic condition
in order to avoid overspecifying the problem. Because of
local changes in interface curvature, the position of this ap-
parent contact line becomes increasingly different from the
true one as Ca increases. One important consequence of this
displacement is illustrated in Table III, which shows the nor-
mal component of velocity at the intersection of the arcr 8
5R and the free surface. The kinematic condition is vio-
lated, with the magnitude of the normal velocity increasing
with increasing Ca. In order to apply the modulated-wedge
boundary condition, it is necessary to know the location of
the true dynamic contact line. The violation of the kinematic
condition in this model is a consequence of the fact that the
arc r 85R has been constructed from the apparent dynamic
contact line. If Moffat’s wedge flow solution28 constructed
from that same point is used as a boundary condition,22 it
would satisfy the kinematic condition, but it would not prop-
erly account for viscous bending effects in the intermediate
region, an effect that becomes more important as Ca in-
creases. Direct experimental measurements of this velocity
field could also be used as an input in these simulations. If
the dynamic contact line can be located successfully, this
velocity field would be specified at a distance from the con-
tact line equal to some fraction of the outer length scale, and
it would satisfy the kinematic condition. The simulations
would proceed without any problems. Use of the analytical
modulated-wedge flow solution as a boundary condition for
the simulations is therefore restricted, and underscores the
need for direct experimental measurements.

The unique capacity of numerical simulations is now
exploited to determine how sensitive the free boundary

FIG. 6. Difference of the~a! magnitude and~b! direction, of the velocities at
r 8510Li between the simulation and the modulated-wedge velocity field.
~Ref. 1! e5531024, uS5uD545°. (ssss) Ca50.005; ~1111! Ca
50.01; ~3333! Ca50.1; ~**** ! Ca50.15.

FIG. 7. Interface curvature measure (db/d ln r* )2 vs distancer * from dy-
namic contact line (r * 5r 8/Li5r /e). ~**** ! Ca50.005; ~1111! Ca
50.01; ~VVVV! Ca50.1; ~nnnn! Ca50.15.
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shapes are to different velocities prescribed atr 85R.
Clearly, such a ‘‘sensitivity’’ test can only be performed us-
ing computations, since there is no way to deliberately pro-
duce prescribed velocities at specific locations within the
liquid in experiments. These computations can aid experi-
mentalists in determining the required level of accuracy for
velocity measurements in anticipation of their use as bound-
ary conditions. We have applied three new velocity boundary

conditions @Eqs. ~5!–~7!# along the arc r 85R51022a.
These have been chosen to satisfy no net mass flux across the
arc r 85R and no-slip at the walls, but otherwise lack any
physical basis, and are illustrated in Fig. 10.

Type ~1! vf50, v r5cos@p3f/uR#, 0<f<uR ,
~5!

Type ~2! vf50, v r5cos@23p3f/uR#, 0<f<uR ,
~6!

Type ~3! vf50, v r512@43f/uR#, f<uR/4,

v r5sin@43p3f/uR#, uR/4,f<3uR/4, ~7!

v r532@43f/uR#, 3uR/4,f<uR .

The resulting interface slopes are compared with those
obtained using the modulated-wedge velocity boundary con-
dition at r 85R, for a range of Ca, and are shown in Figs.
11~a!–11~d!. For Ca,0.1, the interface profiles produced
from each of these new models are indistinguishable from
that using the modulated-wedge flow field at the scale of the
plots. Therefore, for this Ca regime and for this resolution, it
is not necessary to know the exact form of the velocity
boundary condition along the arcr 85R in order to produce
‘‘accurate’’ meniscus shapes. Considering the amount of ad-
ditional effort that must be expended to gather velocity in-
formation, this type of computation can lead to important
savings when modeling over a specific parameter range. Sig-
nificant systematic deviations can, however, be observed at
higher Ca, so that for Ca.0.1, precise flow field boundary
conditions must be utilized.

C. Model 3

As was done and reported for the flat plate geometry,
extensive computations are first completed to identify condi-
tions where the solution is independent of mesh size, and the
lower hypothetical boundary is located sufficiently far away
from the free surface. A 26326 mesh, identical to that used
in the flat plate geometry proved to be sufficient in these
calculations. The outer length scalea5R22R1 . The lower

FIG. 8. ~a! The 21321 mesh used for simulations in a domain where a
region r 85R51022a from an apparent dynamic contact line is removed
from the computational domain. Ca50.005,uS5uD545°. ~b! An expanded
view of the mesh showing the truncated region.

TABLE II. Maximum–minimum values of variables and their locations for successively refined meshes~Truncated domain!. Ca5531023, R51022a,
uR5uS545°.

Variable values
Mesh size vx minimum vy maximum Pminimum Pmaximum Pg

18318 24.928331021 3.401231021 24.04793102 7.203531022 2.43353102

20320 24.932431021 3.461331021 24.09193102 1.372331022 2.43303102

21321 24.932731021 3.471131021 24.06053102 9.896531023 2.43293102

23323 24.932731021 3.471731021 24.05693102 1.014031022 2.43293102

25325 24.932731021 3.471731021 24.05643102 1.009631022 2.43293102

Location
Mesh size x y x y x y x y

18318 0.1875 3.977 0.0076 4.100 0.0076 4.096 0.9375 0.000
20320 0.1875 3.976 0.0098 4.100 0.0076 4.096 0.9375 0.000
21321 0.1875 3.978 0.0098 4.098 0.0076 4.096 0.9375 0.000
23323 0.1875 3.978 0.0098 4.098 0.0076 4.096 0.9375 0.000
25325 0.1875 3.978 0.0098 4.098 0.0076 4.096 0.9375 0.000
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boundary was placed approximately 6(R22R1) away from
the free surface. This distance is adjusted by varying the total
volume of liquid in the annular space.

The flow field is axisymmetric and two-dimensional in
the r 82y8 plane. The key results are shown in Fig. 12,
where the difference in the magnitudes as well as directions
of the velocities atr 85R510Li between the modulated-
wedge flow solution1 and the numerical calculation for Ca
50.005, are shown for various values ofd. For d.1, the
planar modulated-wedge solution mimics the calculated

FIG. 9. Comparisons of interface slopes from the simulations using an exponential slip model withe51023(ssss) and simulations using the modulated
wedge velocity field~Ref. 1! as a boundary condition along the arcr 85R510Li(1111). The interface slopeuR is the best fit value obtained from our
previous simulations.~Ref. 23!. The variabler * 5r 8/Li . ~a! Ca50.005,~b! Ca50.01, ~c! Ca50.1, ~d! Ca50.15.

FIG. 10. Plots of the radial component of velocity vs polar anglef for the
different velocity fields used as boundary conditions atr 8510Li . ~––––!
Type 1; ~••••! Type 2; ~–•–•! Type 3; ~——! Cox.1

TABLE III. Normal component of velocity at the point of intersection of the
arc r 85R51022a with the free surface.

Ca n.V

0.005 0.011
0.01 0.0191
0.1 0.0783
0.15 0.0846
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velocity field. However, the discrepancy becomes very evi-
dent atd50.1, where the role of inner rod curvature on the
flow field is significant. Thed value at which deviations from
the planar modulated-wedge flow field set in are dependent
on the choice ofR as well as on Ca. This calculation is an
example of how simulations can be exploited to put a bound
on the use of the modulated-wedge flow velocity field1 as a
geometry-independent boundary condition.

V. CONCLUSIONS

Numerical simulations of a plate being immersed into an
infinitely deep liquid bath have been utilized to test a strat-
egy aimed at providing geometry-free boundary conditions
for the simulation of dynamic wetting processes. The flow
field along an arc of radius 10Li drawn from the dynamic
contact line is compared to the prediction from the
modulated-wedge solution. The two velocity fields are in
good agreement for Ca,0.1. The discrepancy at higher val-

ues of Ca is not a result of a violation of the low curvature
assumption, but is most likely because the solution to lowest
order in Ca is inadequate. The problem is modeled by elimi-
nating a region defined byr 851022a around the dynamic
contact line, and applying velocity and interface slope
boundary conditions along this line. When the modulated-
wedge solution is used as a velocity boundary condition
along the arc, the resulting interface shapes were found to be
in good agreement with those obtained using the exponential
slip inner model for Ca,0.1. Computations completed using
a different slip model produced no difference in interface
shapes, establishing the viability of using the truncated do-
main to model wetting processes. Our study indicated a rela-
tive insensitivity of the meniscus shape to the nature of the
velocity boundary conditions applied on the truncated do-
main for Ca,0.1. Using computations in an axisymmetric
geometry, we identify conditions where the planar
modulated-wedge flow velocity field breaks down because of

FIG. 11. Comparisons of simulated interface slopes using the three hypothetical velocity boundary conditions with that using the modulated wedge velocity
field, all applied atr 85R51022a. ~1111! Type 1; ~3333! Type 2; ~**** ! Type 3; (ssss) Modulated wedge.~a! Ca50.005, ~b! Ca50.01, ~c!
Ca50.1, and~d! Ca50.15.
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azimuthal curvature effects, putting another useful bound on
the applicability of the analytical solution as a geometry-
independent boundary condition.
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APPENDIX A: GOVERNING EQUATIONS
AND BOUNDARY CONDITIONS

1. Problem 1

A. Governing equations

All lengths are scaled witha, the container length, ve-
locities with the plate speed,U, and pressure and viscous
stresses withmU/a. All variables presented here are dimen-
sionless.

B. Continuity

¹•v50. ~A1!

Here v(x,y)5vx(x,y)ex1vy(x,y)ey , where ex and ey are
unit vectors in thex andy directions, respectively.

C. Conservation of momentum (with Re Ä0)

¹•T50. ~A2!

The stress tensor,T52pI1t, whereI is the identity tensor,
andp is the liquid pressure. The viscous stress tensor, assum-
ing a Newtonian rheology, is of the formt5@¹v1(¹v)

T#.

D. Boundary conditions

No slip and no penetration of liquid on all stationary
solid walls

v50. ~A3!

At the free surface,y5h(x)

n"T5~1/Ca! 2Hn2nPg , ~A4!

n"v50. ~A5!

Equations~A4! and~A5! represent the stress balance and the
kinematic conditions, respectively. Here,n is the unit out-
ward normal from the free liquid surface,H is the mean
curvature of the interface, andPg is the unknown pressure in
the surrounding inviscid phase, relative to an arbitrary cho-
sen datum pressure at the lower right hand corner of the
computational domain.

The contact angles are specified at the contact lines, so
that

nsolid•n5cos~u!. ~A6!

At the dynamic contact line, the microscopic dynamic con-
tact angleu5uD and at the static contact line,u5uS .

Along the moving plate, the liquid speed is given by a
slip model. We have investigated two different slip models:

Exponential slip:

vy52@12exp$2~h~0!2y!/e%#. ~A7a!

Another model:9

vy52$~h~0!2y!/e%2/@11$~h~0!2y!/e%2#, ~A7b!

whereh(x) is the dimensionless height of free surface and
e5Li /a. These models directly producev50 at the contact
line. The key difference between them is how this limiting
velocity is approached.

At the hypothetical lower surface,y50

FIG. 12. Comparison of the~a! magnitude and~b! direction, of the veloci-
ties atr 8510Li from the simulation in an axisymmetric geometry with the
modulated-wedge velocity field~Ref. 1!. e5531024, uS5uD545°, Ca
50.005, d5R1 /(R22R1). (ssss) Flat plate,d@1; ~3333! d51;
~**** ! d50.1.
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vx50, ~A8!

vy52vo~3x21!~x21!, ~A9!

wherevo is the dimensionless liquid speed at (x,y)5(0,0),
and is defined using the appropriate slip model, Eq.~A7a! or
~A7b!.

The mass of liquid within the computational domain
must be conserved. For a liquid of constant density, this
reduces to the volume constraint,

E
0

1

h~x!dx5
A

a2 . ~A10!

2. Problem 2

For model problem 2, the inner region is eliminated and
additional boundary conditions are required alongr 5R. The
meniscus slopeuR is applied as a boundary condition on the
free surface atr 5R, replacing the true microscopic dynamic
contact angle,uD . In cylindrical polar coordinates, the ve-
locity boundary conditions applied along the arc,r 5R, have
the general form

v~r ,f!5v r~r ,f;b!er1vf~r ,f;b!ef , ~A11!

where (r ,f) is the polar coordinate system with its origin at
the dynamic contact line. The moving solid is atf50, and
f5b(r ) is the location of the interface. The no-slip bound-
ary condition is applied all along the solid–liquid interface
within the computational domain. This truncated domain
model allows us to examine how a variety of boundary con-
ditions atr 5R affect free surface shapes.

3. Problem 3

Model problem 3 consists of a rod entering concentri-
cally into an infinitely deep cylindrical liquid bath. The ve-
locity field is two-dimensional, with no azimuthal compo-
nent. In the absence of gravity, the outer length scalea
5R22R1 , whereR2 and R1 are the radii of the outer and
inner cylinders, respectively. A new geometric parameterd
5R1 /(R22R1) enters the calculations. The set of Eqs.
~A1!–~A7! remain unchanged, except for being written in
cylindrical co-ordinates. The lower boundary of the compu-
tational domain is a hypothetical surface, where we assume a
one-dimensional velocity profile given by

v r50, ~A12!

vy~r !5a1r 2/41a2 ln r 1a3 , ~A13!

where

a154vo@2a7 /a51a8#/@a4a612a71a5a822a6~11d!2#,

a25~vo2a1a5/4!/a6 ,

a352@a1~11d!2/41a2 ln~11d!#,

a45~11d!21d2,

a55~11d!22d2,

a65 ln~111/d!,

a75d2 ln d2~11d!2ln~11d!,

a85112 ln~11d!.

In order to account for the additional curvature along the
azimuthal direction, special ‘‘pie-shaped’’ elements must be
chosen for the computations, and the development of the
residuals follows the techniques outlined in Bornside.24

The volume constraint becomes

2pE
d

11d
h~r ! r dr 5

V

a3 . ~A14!

Here,V is the volume of liquid in the annular space defined
by the computational domain.

APPENDIX B: MODULATED WEDGE FLOW
SOLUTION

The modulated-wedge solution developed by Cox1 de-
scribes the velocity field in the intermediate region to O~1! in
Ca, as Ca→0, and is given by

v r~r ,f;b!;@2Sinb Cosb~Cosf2f Sinf!

2Sin2b~Sinf1f Cosf!1b Cosf#/D, ~B1!

vf~r ,f;b!;@f Cosf Sinb Cosb1f Sinf Sin2b

2b Sinf#/D2Ca~2 Sinb!@f Cosf~Sinb

3Cosb2b Cos 2b!1f Sinf~Sin2 b Cos2b

22b Sinb Cosb1Sin4 b1Sin2 b!

1Sinf~b Cos 2b2Sinb Cosb!]/D3, ~B2!

where D5b2sinb cosb and f5b(r ) represents the free
surface.
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