10 research outputs found

    Hidden symmetries on toric Sasaki-Einstein spaces

    No full text
    We describe the construction of Killing-Yano tensors on toric Sasaki-Einstein manifolds. We use the fact that the metric cones of these spaces are Calabi-Yau manifolds. The description of the Calabi-Yau manifolds in terms of toric data, using the Delzant approach to toric geometries, allows us to find explicitly the complex coordinates and write down the Killing-Yano tensors. As a concrete example we present the complete set of special Killing forms on the five-dimensional homogeneous Sasaki-Einstein manifold T1,1

    Microstructure and creep properties of dispersion-strengthened aluminum alloys

    No full text
    The mechanical properties of dispersion-strengthened aluminum alloys, with various dispersoid types, volume fractions, and grain structures, were investigated in conjunction with systematic microstructural examinations. New theoretical concepts, based on thermally activated dislocation detachment from dispersoid particles, were used to analyze the creep behavior. A particularly strong dispersoid-dislocation interaction was identified as reason for the excellent creep properties of carbide dispersion-strengthened aluminum. Oxide particles (Al2O3, MgO) seem to exert a weaker interaction force and are therefore less efficient strengtheners. Although fine crystalline in the as-extruded condition, all alloys are remarkably resistant against diffusional creep. It is demonstrated that this behavior can be consistently understood by extending the concept developed for the interaction between bulk dislocations and dispersoids to grain boundary dislocations

    EARLINET instrument intercomparison campaigns: Overview on strategy and results

    No full text
    This paper introduces the recent European Aerosol Research Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EARLINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009.We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below +- 2 %. Particle backscatter and extinction coefficients agree within +-2x10-4 km-1 sr-1 and +-0.01 km-1, respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.Geoscience and Remote SensingCivil Engineering and Geoscience
    corecore