2,766 research outputs found

    Extension of the Morris-Shore transformation to multilevel ladders

    Full text link
    We describe situations in which chains of N degenerate quantum energy levels, coupled by time-dependent external fields, can be replaced by independent sets of chains of length N, N-1,...,2 and sets of uncoupled single states. The transformation is a generalization of the two-level Morris-Shore transformation [J.R. Morris and B.W. Shore, Phys. Rev. A 27, 906 (1983)]. We illustrate the procedure with examples of three-level chains

    Stimulated Raman adiabatic passage analogs in classical physics

    Full text link
    Stimulated Raman adiabatic passage (STIRAP) is a well established technique for producing coherent population transfer in a three-state quantum system. We here exploit the resemblance between the Schrodinger equation for such a quantum system and the Newton equation of motion for a classical system undergoing torque to discuss several classical analogs of STIRAP, notably the motion of a moving charged particle subject to the Lorentz force of a quasistatic magnetic field, the orientation of a magnetic moment in a slowly varying magnetic field, the Coriolis effect and the inertial frame dragging effect. Like STIRAP, those phenomena occur for counterintuitively ordered field pulses and are robustly insensitive to small changes in the interaction properties

    An optimality criterion for sizing members of heated structures with temperature constraints

    Get PDF
    A thermal optimality criterion is presented for sizing members of heated structures with multiple temperature constraints. The optimality criterion is similar to an existing optimality criterion for design of mechanically loaded structures with displacement constraints. Effectiveness of the thermal optimality criterion is assessed by applying it to one- and two-dimensional thermal problems where temperatures can be controlled by varying the material distribution in the structure. Results obtained from the optimality criterion agree within 2 percent with results from a closed-form solution and with results from a mathematical programming technique. The thermal optimality criterion augments existing optimality criteria for strength and stiffness related constraints and offers the possibility of extension of optimality techniques to sizing structures with combined thermal and mechanical loading

    Measuring a coherent superposition

    Get PDF
    We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses.Comment: 7 pages, 1 figure, twocolumn REVTe

    Phase shifts in nonresonant coherent excitation

    Full text link
    Far-off-resonant pulsed laser fields produce negligible excitation between two atomic states but may induce considerable phase shifts. The acquired phases are usually calculated by using the adiabatic-elimination approximation. We analyze the accuracy of this approximation and derive the conditions for its applicability to the calculation of the phases. We account for various sources of imperfections, ranging from higher terms in the adiabatic-elimination expansion and irreversible population loss to couplings to additional states. We find that, as far as the phase shifts are concerned, the adiabatic elimination is accurate only for a very large detuning. We show that the adiabatic approximation is a far more accurate method for evaluating the phase shifts, with a vast domain of validity; the accuracy is further enhanced by superadiabatic corrections, which reduce the error well below 10410^{-4}. Moreover, owing to the effect of adiabatic population return, the adiabatic and superadiabatic approximations allow one to calculate the phase shifts even for a moderately large detuning, and even when the peak Rabi frequency is larger than the detuning; in these regimes the adiabatic elimination is completely inapplicable. We also derive several exact expressions for the phases using exactly soluble two-state and three-state analytical models.Comment: 10 pages, 7 figure

    Pulse retrieval and soliton formation in a non-standard scheme for dynamic electromagnetically induced transparency

    Full text link
    We examine in detail an alternative method of retrieving the information written into an atomic ensemble of three-level atoms using electromagnetically induced transparency. We find that the behavior of the retrieved pulse is strongly influenced by the relative collective atom-light coupling strengths of the two relevant transitions. When the collective atom-light coupling strength for the retrieval beam is the stronger of the two transitions, regeneration of the stored pulse is possible. Otherwise, we show the retrieval process can lead to creation of soliton-like pulses.Comment: 11 figure

    Dark-State Polaritons for multi-component and stationary light fields

    Full text link
    We present a general scheme to determine the loss-free adiabatic eigensolutions (dark-state polaritons) of the interaction of multiple probe laser beams with a coherently driven atomic ensemble under conditions of electromagnetically induced transparency. To this end we generalize the Morris-Shore transformation to linearized Heisenberg-Langevin equations describing the coupled light-matter system in the weak excitation limit. For the simple lambda-type coupling scheme the generalized Morris-Shore transformation reproduces the dark-state polariton solutions of slow light. Here we treat a closed-loop dual-V scheme wherein two counter-propagating control fields generate a quasi stationary pattern of two counter-propagating probe fields -- so-called stationary light. We show that contrary to previous predictions,there exists a single unique dark-state polariton; it obeys a simple propagation equation.Comment: 6 pages, 2 figure

    Generalized Effective Reducibility

    Full text link
    We introduce two notions of effective reducibility for set-theoretical statements, based on computability with Ordinal Turing Machines (OTMs), one of which resembles Turing reducibility while the other is modelled after Weihrauch reducibility. We give sample applications by showing that certain (algebraic) constructions are not effective in the OTM-sense and considerung the effective equivalence of various versions of the axiom of choice
    corecore