Stimulated Raman adiabatic passage (STIRAP) is a well established technique
for producing coherent population transfer in a three-state quantum system. We
here exploit the resemblance between the Schrodinger equation for such a
quantum system and the Newton equation of motion for a classical system
undergoing torque to discuss several classical analogs of STIRAP, notably the
motion of a moving charged particle subject to the Lorentz force of a
quasistatic magnetic field, the orientation of a magnetic moment in a slowly
varying magnetic field, the Coriolis effect and the inertial frame dragging
effect. Like STIRAP, those phenomena occur for counterintuitively ordered field
pulses and are robustly insensitive to small changes in the interaction
properties