61 research outputs found

    An eclipsing post common-envelope system consisting of a pulsating hot subdwarf B star and a brown dwarf companion

    Get PDF
    Hot subdwarf B stars (sdBs) are evolved, core helium-burning objects located on the extreme horizontal branch. Their formation history is still puzzling as the sdB progenitors must lose nearly all of their hydrogen envelope during the red-giant phase. About half of the known sdBs are in close binaries with periods from 1.2 h to a few days, a fact that implies they experienced a common-envelope phase. Eclipsing hot subdwarf binaries (also called HW Virginis systems) are rare but important objects for determining fundamental stellar parameters. Even more significant and uncommon are those binaries containing a pulsating sdB, as the mass can be determined independently by asteroseismology. Here we present a first analysis of the eclipsing hot subdwarf binary V2008-1753. The light curve shows a total eclipse, a prominent reflection effect, and low--amplitude pulsations with periods from 150 to 180 s. An analysis of the light-- and radial velocity (RV) curves indicates a mass ratio close to q=0.146 q = 0.146, an RV semi-amplitude of K=54.6kms1K=54.6 \,\rm kms^{-1}, and an inclination of i=86.8i=86.8^\circ. Combining these results with our spectroscopic determination of the surface gravity, logg=5.83\log \,g = 5.83, the best--fitting model yields an sdB mass of 0.47MM_{\rm \odot} and a companion mass of 69MJup69 M_{\rm Jup}. As the latter mass is below the hydrogen-burning limit, V2008-1753 represents the first HW Vir system known consisting of a pulsating sdB and a brown dwarf companion. Consequently, it holds great potential for better constraining models of sdB binary evolution and asteroseismology.Comment: 9 pages, 8 figures, accepted for A&

    A new HW Vir binary from the Palomar Transient Factory: PTF1 J072455.75+125300.3 - An eclipsing subdwarf B binary with a M-star companion

    Get PDF
    We report the discovery of an eclipsing binary -- PTF1 J072456++125301-- composed of a subdwarf B (sdB) star (g=17.2mg'=17.2^m) with a faint companion. Subdwarf B stars are core helium-burning stars, which can be found on the extreme horizontal branch. About half of them reside in close binary systems, but few are known to be eclipsing, for which fundamental stellar parameters can be derived.\newline We conducted an analysis of photometric data and spectra from the Palomar 60'' and the 200" Hale telescope respectively. A quantitative spectral analysis found an effective temperature of Teff=33900±350T_{\text{eff}}=33900\pm350\,K, log g = 5.74±0.085.74\pm0.08 and log(nHe/nH)=2.02±0.07n_{\text{He}}/n_{\text{H}}) = -2.02 \pm0.07, typical for an sdB star. The companion does not contribute to the optical light of the system, except through a distinct reflection effect. From the light curve an orbital period of 0.09980(25)\,d and a system inclination of 83.56\pm0.30\,^{\circ} were derived. The radial velocity curve yielded an orbital semi-amplitude of K_1=95.8\pm 8.1\,\text{km s^{-1}}. The mass for the M-type dwarf companion is 0.155±0.020M0.155\pm0.020\,M_{\odot}. PTF1\,J072456++125301 has similar atmospheric parameters to those of pulsating sdB stars (V346 Hya stars). Therefore it could be a high-priority object for asteroseismology, if pulsations were detected such as in the enigmatic case of NY Vir.Comment: Accepted to A&A, 7pages, 4 figure

    Two candidate brown dwarf companions around core helium-burning stars

    Full text link
    Hot subdwarf stars of spectral type B (sdBs) are evolved, core helium-burning objects. The formation of those objects is puzzling, because the progenitor star has to lose almost its entire hydrogen envelope in the red-giant phase. Binary interactions have been invoked, but single sdBs exist as well. We report the discovery of two close hot subdwarf binaries with small radial velocity amplitudes. Follow-up photometry revealed reflection effects originating from cool irradiated companions, but no eclipses. The lower mass limits for the companions of CPD-64^{\circ}481 (0.048M0.048\,M_{\rm \odot}) and PHL\,457 (0.027M0.027\,M_{\rm \odot}) are significantly below the stellar mass limit. Hence they could be brown dwarfs unless the inclination is unfavourable. Two very similar systems have already been reported. The probability that none of them is a brown dwarf is very small, 0.02%. Hence we provide further evidence that substellar companions with masses that low are able to eject a common envelope and form an sdB star. Furthermore, we find that the properties of the observed sample of hot subdwarfs in reflection effect binaries is consistent with a scenario where single sdBs can still be formed via common envelope events, but their low-mass substellar companions do not survive.Comment: accepted to A&

    The MUCHFUSS photometric campaign

    Full text link
    Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost almost all of their hydrogen envelopes. This mass loss is often triggered by common envelope interactions with close stellar or even substellar companions. Cool companions like late-type stars or brown dwarfs are detectable via characteristic light curve variations like reflection effects and often also eclipses. To search for such objects we obtained multi-band light curves of 26 close sdO/B binary candidates from the MUCHFUSS project with the BUSCA instrument. We discovered a new eclipsing reflection effect system (P=0.168938P=0.168938~d) with a low-mass M dwarf companion (0.116M0.116 M_{\rm \odot}). Three more reflection effect binaries found in the course of the campaign were already published, two of them are eclipsing systems, in one system only showing the reflection effect but no eclipses the sdB primary is found to be pulsating. Amongst the targets without reflection effect a new long-period sdB pulsator was discovered and irregular light variations were found in two sdO stars. The found light variations allowed us to constrain the fraction of reflection effect binaries and the substellar companion fraction around sdB stars. The minimum fraction of reflection effect systems amongst the close sdB binaries might be greater than 15\% and the fraction of close substellar companions in sdB binaries might be as high as 8.0%8.0\%. This would result in a close substellar companion fraction to sdB stars of about 3\%. This fraction is much higher than the fraction of brown dwarfs around possible progenitor systems, which are solar-type stars with substellar companions around 1 AU, as well as close binary white dwarfs with brown dwarf companions. This might be a hint that common envelope interactions with substellar objects are preferentially followed by a hot subdwarf phase.Comment: accepted for A&

    The population of white dwarf binaries with hot subdwarf companions

    Get PDF
    Hot subdwarfs (sdBs) are core helium-burning stars, which lost almost their entire hydrogen envelope in the red-giant phase. Since a high fraction of those stars are in close binary systems, common envelope ejection is an important formation channel. We identified a total population of 51 close sdB+WD binaries based on time-resolved spectroscopy and multi-band photometry, derive the WD mass distribution and constrain the future evolution of these systems. Most WDs in those binaries have masses significantly below the average mass of single WDs and a high fraction of them might therefore have helium cores. We found 12 systems that will merge in less than a Hubble time and evolve to become either massive C/O WDs, AM\,CVn systems, RCrB stars or even explode as supernovae type Ia.Comment: 5 pages, 2 figures, to appear in the proceedings of the 19th European White Dwarf Workshop, ASP Conf. Se

    Quantitative spectral analysis of the sdB star HD 188112: a helium-core white dwarf progenitor

    Full text link
    HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered as a pre-extremely low mass (ELM) white dwarf (WD). ELM WDs (M \le 0.3 Msun) are He-core objects produced by the evolution of compact binary systems. We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. We use hybrid non-LTE model atmospheres to fit the observed spectral lines and derive the abundances of more than a dozen elements as well as the rotational broadening of metallic lines. We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the already published ones. The system has a period of 0.60658584 days and a WD companion with M \geq 0.70 Msun. By assuming a tidally locked rotation, combined with the projected rotational velocity (v sin i = 7.9 ±\pm 0.3 km s1^{-1}) we constrain the companion mass to be between 0.9 and 1.3 Msun. We further discuss the future evolution of the system as a potential progenitor of a (underluminous) type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, as well as for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.Comment: Accepted for publication in A&

    Spectral Analysis of Binary Pre-white Dwarf Systems

    Get PDF
    Short period double degenerate white dwarf (WD) binaries with periodsof less than ∼1 day are considered to be one of the likely progenitors of type Ia super-novae. These binaries have undergone a period of common envelope evolution. If thecore ignites helium before the envelope is ejected, then a hot subdwarf remains priorto contracting into a WD. Here we present a comparison of two very rare systems thatcontain two hot subdwarfs in short period orbits. We provide a quantitative spectro-scopic analysis of the systems using synthetic spectra from state-of-the-art non-LTEmodels to constrain the atmospheric parameters of the stars. We also use these modelsto determine the radial velocities, and thus calculate dynamical masses for the stars ineach system.Fil: Finch, N. L.. University of Leicester; Reino UnidoFil: Braker, I. P.. University of Leicester; Reino UnidoFil: Reindl, N.. University of Leicester; Reino UnidoFil: Barstow, M. A.. University of Leicester; Reino UnidoFil: Casewell, S. L.. University of Leicester; Reino UnidoFil: Burleigh, M.. University of Leicester; Reino UnidoFil: Kupfer, T.. University of California; Estados UnidosFil: Kilkenny, D.. University of the Western Cape; SudáfricaFil: Geier, S.. Universitat Potsdam; AlemaniaFil: Schaffenroth, V.. Universitat Potsdam; AlemaniaFil: Schaffenroth, V.. Universitat Potsdam; AlemaniaFil: Miller Bertolami, Marcelo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Taubenberger, S.. Gobierno de la República Federal de Alemania. Max Planck Institut für Astrophysik; AlemaniaFil: Freudenthal, J.. No especifíca;Radiative Signatures from the Cosmos: A Conference in Honor of Ivan HubenyParisFranciaUniversidad de Pari
    corecore