13 research outputs found

    Consequence of contact local kinematics of sliding bodies on the surface temperatures generated

    No full text
    International audienceWhen studying contact with friction between two bodies, it is not possible to obtain data on real contact conditions on the basis of steady-state situations. Indeed, contacts with friction usually lead to dynamic instabilities generated at the contact interface. It is therefore necessary to take into account contact dynamics in order to better understand the phenomena involved during sliding with friction. The explicit dynamic finite element code PlastD in 2D is used to simulate the contact between two bodies. A constant Coulomb friction coefficient is imposed at the interface. The simulations carried out permitted identifying local contact conditions (kinematics, tribological state, stresses, etc.). They revealed that different instability regimes can be generated (stick–slip, slip–separation, stick–slip–separation, etc.). Local contact stresses and the sliding velocity oscillate through time when instabilities are generated and their maximum values can be much higher than those expected for steady-state conditions. The aim of this paper is to analyse the frictional instabilities and their consequences on the heat generated in the contact. First, the influence of the different instability regimes is studied on a simple contact. Then, an industrial mechanism is studied (wheel–rail contact) to investigate the influence of local contact conditions on the temperature of the rail surface

    First-body versus third-body: Dialogue between an experiment and a combined discrete and finite element approach

    No full text
    The present paper proposes to analyze relations between the behavior of two bodies in contact (local stress and vibration modes) and the rheology of third-body particles. Experiments are performed on a system composed of a polycarbonate disk in contact with a steel cylinder, where birefringent property of polycarbonate allows us to observe shear-stress isovalues. Multiscale numerical simulations involve the coupling between finite elements and discrete elements to model simultaneously nonhomogeneous third-body flows within a confined contact and dynamical behavior of the bodies in contact. Comparisons between experiments and simulations are performed on the dynamic response of the system, the stress distribution, as well as the evolution of third-body particles within the contact. Such comparisons exhibit not only qualitative results but also quantitative ones and suggest a new approach to study in deeper third-body rheology

    Prophylactic Injection of Recombinant Alpha-Enolase Reduces Arthritis Severity in the Collagen-Induced Arthritis Mice Model

    No full text
    To evaluate the ability of the glycolytic enzyme alpha-enolase (ENO1) or its immunodominant peptide (pEP1) to reduce the severity of CIA in DBA/1 mice when injected in a prophylactic way.Mice were treated with mouse ENO1 or pEP1 one day prior to collagen II immunization. Clinical assessment was evaluated using 4 parameters (global and articular scores, ankle thickness and weight). Titers of serum anti-ENO1, anti-cyclic citrullinated peptides (anti-CCP) and anti-CII (total IgG and IgG1/IgG2a isotypes) antibodies were measured by ELISA at different time-points. Disease activity was assessed by histological analysis of both anterior and hind paws at the end of experimentation.Prophylactic injection of 100 μg of ENO1 reduced severity of CIA. Serum levels of anti-CII antibodies were reduced in ENO1-treated mice. Concordantly, ENO1-treated mice joints presented less severe histological signs of arthritis. ENO1 did not induce a shift toward a Th2 response since IgG1/IgG2a ratio of anti-CII antibodies remained unchanged and IL-4 serum levels were similar to those measured in the control group.Pre-immunization with ENO1 or its immunodominant peptide pEP1 reduces CIA severity at the clinical, immunological and histological levels. Effects of pEP1 were less pronounced. This immunomodulatory effect is associated with a reduction in anti-CII antibodies production but is not due to a Th1/Th2 shift

    Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis.

    No full text
    Gene-environment associations are important in rheumatoid arthritis (RA) susceptibility, with an association existing between smoking, HLA- DRB1 'shared epitope' alleles, PTPN22 and antibodies to cyclic citrullinated peptides (CCP). Here, we test the hypothesis that a subset of the anti-CCP response, with specific autoimmunity to citrullinated alpha-enolase, accounts for an important portion of these associations. In 1,497 individuals from three RA cohorts, antibodies to the immunodominant citrullinated alpha-enolase CEP-1 epitope were detected in 43-63% of the anti-CCP-positive individuals, and this subset was preferentially linked to HLA-DRB1*04. In a case-control analysis of 1,000 affected individuals and 872 controls, the combined effect of shared epitope, PTPN22 and smoking showed the strongest association with the anti-CEP-1-positive subset (odds ratio (OR) of 37, compared to an OR of 2 for the corresponding anti-CEP-1-negative, anti-CCP-positive subset). We conclude that citrullinated alpha-enolase is a specific citrullinated autoantigen that links smoking to genetic risk factors in the development of RA
    corecore