316 research outputs found

    Spin/orbit moment imbalance in the near-zero moment ferromagnetic semiconductor SmN

    Full text link
    SmN is ferromagnetic below 27 K, and its net magnetic moment of 0.03 Bohr magnetons per formula unit is one of the smallest magnetisations found in any ferromagnetic material. The near-zero moment is a result of the nearly equal and opposing spin and orbital moments in the 6H5/2 ground state of the Sm3+ ion, which leads finally to a nearly complete cancellation for an ion in the SmN ferromagnetic state. Here we explore the spin alignment in this compound with X-ray magnetic circular dichroism at the Sm L2,3 edges. The spectral shapes are in qualitative agreement with computed spectra based on an LSDA+U (local spin density approximation with Hubbard-U corrections) band structure, though there remain differences in detail which we associate with the anomalous branching ratio in rare-earth L edges. The sign of the spectra determine that in a magnetic field the Sm 4f spin moment aligns antiparallel to the field; the very small residual moment in ferromagnetic SmN aligns with the 4f orbital moment and antiparallel to the spin moment. Further measurements on very thin (1.5 nm) SmN layers embedded in GdN show the opposite alignment due to a strong Gd-Sm exchange, suggesting that the SmN moment might be further reduced by about 0.5 % Gd substitution

    Complete mitogenome sequences of smooth hammerhead sharks, Sphyrna zygaena, from the eastern and western Atlantic

    Get PDF
    We report the first mitogenome sequences of the circumglobally distributed, highly mobile, smooth hammerhead shark, Sphyrna zygaena, from the eastern and western Atlantic. Both genomes were 16,729 bp long with 13 protein-coding genes, two rRNAs, 22 tRNAs and a non-coding control region. The two Atlantic shark sequences differ from each other by 13 SNPs, and by 43 and 44 SNPs from the published mitogenome of an S. zygaena specimen from the eastern Pacific Ocean. The cross-Atlantic mitogenome sequences reported here provide a resource to assist with population genetics studies of this widely exploited species of conservation concern

    Vector Particle Interactions In the Quasipotential Approach

    Full text link
    The composite system, formed by two S=1S=1 particles, is considered. The field operators of constituents are transformed on the (1,0)⊕(0,1)(1,0)\oplus (0,1) representation of the Lorentz group. The problem of interaction of S=1S=1 particle with the electromagnetic field is also discussed.Comment: LateX file, 7pp., Preprint IFUNAM FT-93-01

    Quantitative study of molecular N_2 trapped in disordered GaN:O films

    Full text link
    The structure of disordered GaN:O films grown by ion-assisted deposition is investigated using x-ray absorption near-edge spectroscopy and Raman spectroscopy. It is found that between 4 and 21 % of the nitrogen in the films is in the form of molecular N_2 that interacts only weakly with the surrounding matrix. The anion to cation ratio in the GaN:O host remains close to unity, and there is a close correlation between the N_2 fraction, the level of oxygen impurities, and the absence of short-range order in the GaN:O matrix.Comment: 5 pages, 3 figure

    Bi12Rh3Cu2I5: A 3D Weak Topological Insulator with Monolayer Spacers and Independent Transport Channels

    Get PDF
    Topological insulators (TIs) are semiconductors with protected electronic surface states that allow dissipation-free transport. TIs are envisioned as ideal materials for spintronics and quantum computing. In Bi14Rh3I9, the first weak 3D TI, topology presumably arises from stacking of the intermetallic [(Bi4Rh)3I]2+ layers, which are predicted to be 2D TIs and to possess protected edge-states, separated by topologically trivial [Bi2I8]2− octahedra chains. In the new layered salt Bi12Rh3Cu2I5, the same intermetallic layers are separated by planar, i.e., only one atom thick, [Cu2I4]2− anions. Density functional theory (DFT)-based calculations show that the compound is a weak 3D TI, characterized by (Formula presented.), and that the topological gap is generated by strong spin–orbit coupling (E g,calc. ∼ 10 meV). According to a bonding analysis, the copper cations prevent strong coupling between the TI layers. The calculated surface spectral function for a finite-slab geometry shows distinct characteristics for the two terminations of the main crystal faces ⟨001⟩, viz., [(Bi4Rh)3I]2+ and [Cu2I4]2−. Photoelectron spectroscopy data confirm the calculated band structure. In situ four-point probe measurements indicate a highly anisotropic bulk semiconductor (E g,exp. = 28 meV) with path-independent metallic conductivity restricted to the surface as well as temperature-independent conductivity below 60 K
    • …
    corecore