271 research outputs found
Giant Coulomb broadening and Raman lasing on ionic transitions
CW generation of anti-Stokes Raman laser on a number of blue-green argon-ion
lines (4p-4s, 4p-3d) has been demonstrated with optical pumping from metastable
levels 3d'^2G, 3d^4F. It is found, that the population transfer rate is
increased by a factor of 3-5 (and hence, the output power of such Raman laser)
owing to Coulomb diffusion in the velocity space. Measured are the excitation
and relaxation rates for the metastable level. The Bennett hole on the
metastable level has been recorded using the probe field technique. It has been
shown that the Coulomb diffusion changes shape of the contour to exponential
cusp profile while its width becomes 100 times the Lorentzian one and reaches
values close to the Doppler width. Such a giant broadening is also confirmed by
the shape of the absorption saturation curve.Comment: RevTex 18 pages, 5 figure
Guest editorial: special issue on vision-based human activity recognition
sem informação301585
The glassy response of solid He-4 to torsional oscillations
We calculated the glassy response of solid He-4 to torsional oscillations
assuming a phenomenological glass model. Making only a few assumptions about
the distribution of glassy relaxation times in a small subsystem of otherwise
rigid solid He-4, we can account for the magnitude of the observed period shift
and concomitant dissipation peak in several torsion oscillator experiments. The
implications of the glass model for solid He-4 are threefold: (1) The dynamics
of solid He-4 is governed by glassy relaxation processes. (2) The distribution
of relaxation times varies significantly between different torsion oscillator
experiments. (3) The mechanical response of a torsion oscillator does not
require a supersolid component to account for the observed anomaly at low
temperatures, though we cannot rule out its existence.Comment: 9 pages, 4 figures, presented at QFS200
A glassy contribution to the heat capacity of hcp He solids
We model the low-temperature specific heat of solid He in the hexagonal
closed packed structure by invoking two-level tunneling states in addition to
the usual phonon contribution of a Debye crystal for temperatures far below the
Debye temperature, . By introducing a cutoff energy in the
two-level tunneling density of states, we can describe the excess specific heat
observed in solid hcp He, as well as the low-temperature linear term in the
specific heat. Agreement is found with recent measurements of the temperature
behavior of both specific heat and pressure. These results suggest the presence
of a very small fraction, at the parts-per-million (ppm) level, of two-level
tunneling systems in solid He, irrespective of the existence of
supersolidity.Comment: 11 pages, 4 figure
Ultra-cold Polarized Fermi Gases
Recent experiments with ultra-cold atoms have demonstrated the possibility of
realizing experimentally fermionic superfluids with imbalanced spin
populations. We discuss how these developments have shed a new light on a half-
century old open problem in condensed matter physics, and raised new
interrogations of their own.Comment: 27 pages; 8 figures; Published in Report in Rep. Prog. Phys. 73
112401 (2010
Solid 4He and the Supersolid Phase: from Theoretical Speculation to the Discovery of a New State of Matter? A Review of the Past and Present Status of Research
The possibility of a supersolid state of matter, i.e., a crystalline solid
exhibiting superfluid properties, first appeared in theoretical studies about
forty years ago. After a long period of little interest due to the lack of
experimental evidence, it has attracted strong experimental and theoretical
attention in the last few years since Kim and Chan (Penn State, USA) reported
evidence for nonclassical rotational inertia effects, a typical signature of
superfluidity, in samples of solid 4He. Since this "first observation", other
experimental groups have observed such effects in the response to the rotation
of samples of crystalline helium, and it has become clear that the response of
the solid is extremely sensitive to growth conditions, annealing processes, and
3He impurities. A peak in the specific heat in the same range of temperatures
has been reported as well as anomalies in the elastic behaviour of solid 4He
with a strong resemblance to the phenomena revealed by torsional oscillator
experiments. Very recently, the observation of unusual mass transport in hcp
solid 4He has also been reported, suggesting superflow. From the theoretical
point of view, powerful simulation methods have been used to study solid 4He,
but the interpretation of the data is still rather difficult; dealing with the
question of supersolidity means that one has to face not only the problem of
the coexistence of quantum coherence phenomena and crystalline order, exploring
the realm of spontaneous symmetry breaking and quantum field theory, but also
the problem of the role of disorder, i.e., how defects, such as vacancies,
impurities, dislocations, and grain boundaries, participate in the phase
transition mechanism.Comment: Published on J. Phys. Soc. Jpn., Vol.77, No.11, p.11101
Defects and glassy dynamics in solid He-4: Perspectives and current status
We review the anomalous behavior of solid He-4 at low temperatures with
particular attention to the role of structural defects present in solid. The
discussion centers around the possible role of two level systems and structural
glassy components for inducing the observed anomalies. We propose that the
origin of glassy behavior is due to the dynamics of defects like dislocations
formed in He-4. Within the developed framework of glassy components in a solid,
we give a summary of the results and predictions for the effects that cover the
mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of
the glassy response of solid He-4. Our proposed glass model for solid He-4 has
several implications: (1) The anomalous properties of He-4 can be accounted for
by allowing defects to freeze out at lowest temperatures. The dynamics of solid
He-4 is governed by glasslike (glassy) relaxation processes and the
distribution of relaxation times varies significantly between different
torsional oscillator, shear modulus, and dielectric function experiments. (2)
Any defect freeze-out will be accompanied by thermodynamic signatures
consistent with entropy contributions from defects. It follows that such
entropy contribution is much smaller than the required superfluid fraction, yet
it is sufficient to account for excess entropy at lowest temperatures. (3) We
predict a Cole-Cole type relation between the real and imaginary part of the
response functions for rotational and planar shear that is occurring due to the
dynamics of defects. Similar results apply for other response functions. (4)
Using the framework of glassy dynamics, we predict low-frequency yet to be
measured electro-elastic features in defect rich He-4 crystals. These
predictions allow one to directly test the ideas and very presence of glassy
contributions in He-4.Comment: 33 pages, 13 figure
Mycobacteria Attenuate Nociceptive Responses by Formyl Peptide Receptor Triggered Opioid Peptide Release from Neutrophils
In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR) and/or toll like receptor (TLR) agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively). Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, β-endorphin) antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim at selective FPR agonists to boost endogenous analgesia
Two New Vortex Liquids
It is suggested that the observations of nonlinear susceptibility and Nernst
effect in cuprate superconductors above Tc, and those of non-classical
rotational inertia in solid He, are two manifestations of a state of matter we
call a vortex liquid, distinct from a conventional liquid in that its
properties are dominated by conserved supercurrents flowing around a thermally
fluctuating tangle of vortices
- …