1,206 research outputs found

    Unquenched Numerical Stochastic Perturbation Theory

    Get PDF
    The inclusion of fermionic loops contribution in Numerical Stochastic Perturbation Theory (NSPT) has a nice feature: it does not cost so much (provided only that an FFT can be implemented in a fairly efficient way). Focusing on Lattice SU(3), we report on the performance of the current implementation of the algorithm and the status of first computations undertaken.Comment: 3 pages, 3 figures, Lattice2002(algor

    Two and three loops computations of renormalization constants for lattice QCD

    Full text link
    Renormalization constants can be computed by means of Numerical Stochastic Perturbation Theory to two/three loops in lattice perturbation theory, both in the quenched approximation and in the full (unquenched) theory. As a case of study we report on the computation of renormalization constants of the propagator for Wilson fermions. We present our unquenched (N_f=2) computations and compare the results with non perturbative determinations.Comment: Lattice2004(improv), 3 pages, 4 figure

    3-d lattice SU(3) free energy to four loops

    Full text link
    We report on the perturbative computation of the 3d lattice Yang-Mills free energy to four loops by means of Numerical Stochastic Perturbation Theory. The known first and second orders have been correctly reproduced; the third and fourth order coefficients are new results and the known logarithmic IR divergence in the fourth order has been correctly identified. Progress is being made in switching to the gluon mass IR regularization and the related inclusion of the Faddeev-Popov determinant.Comment: Lattice2004(non-zero), 3 pages, 2 figure

    Robust probabilistic-constrained optimization for IRS-aided MISO communication systems

    Get PDF
    Taking into account imperfect channel state information, this letter formulates and solves a joint active/passive beamforming optimization problem in multiple-input single-output systems with the support of an intelligent reflecting surface. In particular, we introduce an optimization problem to minimize the total transmit power subject to maintaining the users' signal-to-interference-plus-noise-ratio coverage probability above a predefined target. Due to the presence of probabilistic constraints, the proposed optimization problem is non-convex. To circumvent this issue, we first recast the proposed problem in a convex form by adopting the Bernstein-type inequality, and we then introduce a converging alternating optimization approach to iteratively find the active/passive beamforming vectors. In particular, the transformed robust optimization problem can be effectively solved by using standard interior-point methods. Numerical results demonstrate the effectiveness of jointly optimizing the active/passive beamforming vectors

    B Physics on the Lattice: Λ\overline{\Lambda}, λ1\lambda_{1}, mb(mb)\overline{m}_{b}(\overline{m}_{b}), λ2\lambda_2, B0Bˉ0B^{0}-\bar{B}^{0} mixing, \fb and all that

    Full text link
    We present a short review of our most recent high statistics lattice determinations in the HQET of the following important parameters in B physics: the B--meson binding energy, Λ\overline{\Lambda} and the kinetic energy of the b quark in the B meson, λ1\lambda_1, which due to the presence of power divergences require a non--perturbative renormalization to be defined; the MS\overline{MS} running mass of the b quark, mb(mb)\overline{m}_{b}(\overline{m}_{b}); the BB^{*}--BB mass splitting, whose value in the HQET is determined by the matrix element of the chromo--magnetic operator between B meson states, λ2\lambda_2; the B parameter of the B0B^{0}--Bˉ0\bar{B}^{0} mixing, BBB_{B}, and the decay constant of the B meson, fBf_{B}. All these quantities have been computed using a sample of 600600 gauge field configurations on a 243×4024^{3}\times 40 lattice at β=6.0\beta=6.0. For Λ\overline{\Lambda} and mb(mb)\overline{m}_{b}(\overline{m}_{b}), we obtain our estimates by combining results from three independent lattice simulations at β=6.0\beta=6.0, 6.26.2 and 6.46.4 on the same volume.Comment: 3 latex pages, uses espcrc2.sty (included). Talk presented at LATTICE96(heavy quarks

    Renormalization of infrared contributions to the QCD pressure

    Full text link
    Thanks to dimensional reduction, the infrared contributions to the QCD pressure can be obtained from two different three-dimensional effective field theories, called the Electrostatic QCD (Yang-Mills plus adjoint Higgs) and the Magnetostatic QCD (pure Yang-Mills theory). Lattice measurements have been carried out within these theories, but a proper interpretation of the results requires renormalization, and in some cases also improvement, i.e. the removal of terms of O(a) or O(a^2). We discuss how these computations can be implemented and carried out up to 4-loop level with the help of Numerical Stochastic Perturbation Theory.Comment: 7 pages, 4 figures, talk presented at Lattice 2006 (High temperature and density

    The leading non-perturbative coefficient in the weak-coupling expansion of hot QCD pressure

    Get PDF
    Using Numerical Stochastic Perturbation Theory within three-dimensional pure SU(3) gauge theory, we estimate the last unknown renormalization constant that is needed for converting the vacuum energy density of this model from lattice regularization to the MSbar scheme. Making use of a previous non-perturbative lattice measurement of the plaquette expectation value in three dimensions, this allows us to approximate the first non-perturbative coefficient that appears in the weak-coupling expansion of hot QCD pressure.Comment: 16 pages. v2: published versio

    3-d Lattice QCD Free Energy to Four Loops

    Full text link
    We compute the expansion of the 3-d Lattice QCD free energy to four loop order by means of Numerical Stochastic Perturbation Theory. The first and second order are already known and are correctly reproduced. The third and fourth order coefficients are new results. The known logarithmic divergence in the fourth order is correctly identified. We comment on the relevance of our computation in the context of dimensionally reduced finite temperature QCD.Comment: 8 pages, 3 figures, latex typeset with JHEP3.cl

    Four loop stochastic perturbation theory in 3d SU(3)

    Full text link
    Dimensional reduction is a key issue in finite temperature field theory. For example, when following the QCD Free Energy from low to high scales across the critical temperature, ultrasoft degrees of freedom can be captured by a 3d SU(3) pure gauge theory. For such a theory a complete perturbative matching requires four loop computations, which we undertook by means of Numerical Stochastic Perturbation Theory. We report on the computation of the pure gauge plaquette in 3d, and in particular on the extraction of the logarithmic divergence at order g^8, which had already been computed in the continuum.Comment: 3 pages, 2 figure, Lattice2003(nonzero

    Towards 4-loop NSPT result for a 3-dimensional condensate-contribution to hot QCD pressure

    Get PDF
    Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-called soft modes can be studied via an effective three-dimensional theory named Electrostatic QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the perturbative series within EQCD suggests to perform lattice measurements of some of the associated gluon condensates. These turn out, however, to be plagued by large discretization artifacts. We discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lattice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on a concrete 2-loop example.Comment: Presented at 25th International Symposium on Lattice Field Theory, Regensburg, Germany, 30 Jul - 4 Aug 2007, 7 page
    corecore