28 research outputs found

    Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers

    Get PDF
    A new algorithm to retrieve nitrogen dioxide (NO2) column densities using MKIV ("Mark IV") Brewer spectrophotometers is described. The method includes several improvements, such as a more recent spectroscopic data set, the reduction of measurement noise, interference by other atmospheric species and instrumental settings, and a better determination of the zenith sky air mass factor. The technique was tested during an ad hoc calibration campaign at the high-altitude site of Izaña (Tenerife, Spain) and the results of the direct sun and zenith sky geometries were compared to those obtained by two reference instruments from the Network for the Detection of Atmospheric Composition Change (NDACC): a Fourier Transform Infrared Radiometer (FTIR) and an advanced visible spectrograph (RASAS-II) based on the differential optical absorption spectrometry (DOAS) technique

    Intercomparison of aerosol optical depth measurements in the UVB using Brewer Spectrophotometers and a Li-Cor Spectrophotometer

    Get PDF
    The first Iberian UV radiation intercomparison was held at “El Arenosillo”-Huelva station of the Instituto Nacional de Técnica Aeroespatial (INTA) from September 1 to 10, 1999. During this campaign, seven Brewer spectrophotometers and one Li-Cor spectrophotometer measured the total column aerosol optical depth (AOD) at 306, 310, 313.5, 316.75 and 320 nm. The AOD calibration of one Brewer was transferred to all other Brewers using one day of intensive measurements. The remaining days were used to observe the stability and reproducibility of the AOD measurements by the different instruments. All Brewer spectrophotometers agreed to within an AOD of 0.03 during the whole measurement campaign. The differences in AOD between the Li-Cor spectrophotometer and the Brewer spectrophotometers were between −0.07 and +0.02 at 313.5, 316.75, and 320 nm. This investigation demonstrates the possibility of using the existing worldwide Brewer network as a global UV aerosol network for AOD monitoring.The first Iberian UV radiation intercomparison was supported by the CICYT, project CLI97- 0345-C05-05 under the coordination of INM

    Campaña de intercomparación Brewer 2017: calibración del Brewer#102

    Get PDF
    Ponencia presentada en: XXXV Jornadas Científicas de la AME y el XIX Encuentro Hispano Luso de Meteorología celebrado en León, del 5 al 7 de marzo de 2018.En noviembre del 2003 y bajo el amparo de la Organización Mundial Meteorología (OMM) y el Programa para la Observación Global de la Atmósfera (GAW) se estableció el Centro de calibración Regional Brewer para Europa (RBCC-E) en el Observatorio Atmosférico de Izaña (IZO) perteneciente a la Agencia Estatal de Meteorología. El RBCC-E es la referencia europea lo que le permite utilizar sus observaciones para calibrar estos Brewers. El RBCC-E organiza intercomparaciones anuales, que alternan su sede entre la estación de Radiosondeo El Arenosillo (Huelva) perteneciente al Instituto Nacional de Técnica Aeroespacial (INTA) y el Observatorio Atmosférico de Arosa (Suiza) operado por Meteoswiss. La XII Campaña de calibración se realizó en El Arenosillo entre los días del 29 de mayo al 7 de Junio, 2017. En esta campaña participaron más de 20 Brewers pertenecientes a 11 organizaciones tanto servicios meteorológicos nacionales como instituciones privadas. Además, se pudo realizar una calibración espectral en el rango ultravioleta gracias a la participación de la referencia estándar viajera QASUME perteneciente al centro de calibración Mundial para ultravioleta (WCC-UV). En este trabajo se presenta una visión general del estado inicial y final de la calibración del Brewer#102, indicando los principales parámetros que han sido tenidos en cuenta en su calibración: lámpara estándar, corrección de filtros, resultados del test de dispersión y transferencia de la nueva ETC (Constante extra-terrestre). También, y debido a que el instrumento es un Brewer de monocromador simple se calculó su corrección por stray light

    Performance of the ground-based total ozone network assessed using satellite data

    Get PDF
    Dobson and Brewer spectrophotometer and filter ozonometer data available from the World Ozone and Ultraviolet Data Centre (WOUDC) were compared with satellite total ozone measurements from TOMS (onboard Nimbus 7, Meteor 3, and Earth Probe satellites), OMI (AURA satellite) and GOME (ERS-2 satellite) instruments. Five characteristics of the difference with satellite data were calculated for each site and instrument type: the mean difference, the standard deviation of daily differences, the standard deviation of monthly differences, the amplitude of the seasonal component of the difference, and the range of annual values. All these characteristics were calculated for five 5-year-long bins and for each site separately for direct sun (DS) and zenith sky (ZS) ozone measurements. The main percentiles were estimated for the five characteristics of the difference and then used to establish criteria for “suspect” or “outlier” sites for each characteristic. About 61% of Dobson, 46% of Brewer, and 28% of filter stations located between 60°S and 60°N have no “suspect” or “outlier” characteristics. In nearly 90% of all cases, Dobson and Brewer sites demonstrated 5-year mean differences with satellites to be within ±3% (for DS observations). The seasonal median difference between all Brewer DS measurements at 25°–60°N and GOME and OMI overpasses remained within ±0.5% over a period of more than 10 years (...

    Temperature dependence of the Brewer global UV measurements

    Get PDF
    Spectral measurements of global UV irradiance recorded by Brewer spectrophotometers can be significantly affected by instrument-specific optical and mechanical features. Thus, proper corrections are needed in order to reduce the associated uncertainties to within acceptable levels. The present study aims to contribute to the reduction of uncertainties originating from changes in the Brewer internal temperature, which affect the performance of the optical and electronic parts, and subsequently the response of the instrument. Until now, measurements of the irradiance from various types of lamps at different temperatures have been used to characterize the instruments' temperature dependence. The use of 50 W lamps was found to induce errors in the characterization due to changes in the transmissivity of the Teflon diffuser as it warms up by the heat of the lamp. In contrast, the use of 200 or 1000 W lamps is considered more appropriate because they are positioned at longer distances from the diffuser so that warming is negligible. Temperature gradients inside the instrument can cause mechanical stresses which can affect the instrument's optical characteristics. Therefore, during the temperature-dependence characterization procedure warming or cooling must be slow enough to minimize these effects. In this study, results of the temperature characterization of eight different Brewer spectrophotometers operating in Greece, Finland, Germany and Spain are presented. It was found that the instruments' response changes differently in different temperature regions due to different responses of the diffusers' transmittance. The temperature correction factors derived for the Brewer spectrophotometers operating at Thessaloniki, Greece, and Sodankylä, Finland, were evaluated and were found to remove the temperature dependence of the instruments' sensitivity.This article is based upon work from COST Action ES1207 “A European Brewer Network (EUBREWNET)”, supported by COST (European Cooperation in Science and Technology) and from the ENV59-ATMOZ (“Traceability for atmospheric total column ozone”) Joint Research Programme (JRP)

    Internal consistency of the Regional Brewer Calibration Centre for Europe triad during the period 2005–2016

    No full text
    Total ozone column measurements can be made using Brewer spectrophotometers, which are calibrated periodically in intercomparison campaigns with respect to a reference instrument. In 2003, the Regional Brewer Calibration Centre for Europe (RBCC-E) was established at the Izaña Atmospheric Research Center (Canary Islands, Spain), and since 2011 the RBCC-E has transferred its calibration based on the Langley method using travelling standard(s) that are wholly and independently calibrated at Izaña. This work is focused on reporting the consistency of the measurements of the RBCC-E triad (Brewer instruments #157, #183 and #185) made at the Izaña Atmospheric Observatory during the period 2005–2016. In order to study the long-term precision of the RBCC-E triad, it must be taken into account that each Brewer takes a large number of measurements every day and, hence, it becomes necessary to calculate a representative value of all of them. This value was calculated from two different methods previously used to study the long-term behaviour of the world reference triad (Toronto triad) and Arosa triad. Applying their procedures to the data from the RBCC-E triad allows the comparison of the three instruments. In daily averages, applying the procedure used for the world reference triad, the RBCC-E triad presents a relative standard deviation equal to σ&thinsp; = &thinsp;0.41&thinsp;%, which is calculated as the mean of the individual values for each Brewer (σ157&thinsp; = &thinsp;0.362&thinsp;%, σ183&thinsp; = &thinsp;0.453&thinsp;% and σ185&thinsp; = &thinsp;0.428&thinsp;%). Alternatively, using the procedure used to analyse the Arosa triad, the RBCC-E presents a relative standard deviation of about σ&thinsp; = &thinsp;0.5&thinsp;%. In monthly averages, the method used for the data from the world reference triad gives a relative standard deviation mean equal to σ&thinsp; = &thinsp;0.3&thinsp;% (σ157&thinsp; = &thinsp;0.33&thinsp;%, σ183&thinsp; = &thinsp;0.34&thinsp;% and σ185&thinsp; = &thinsp;0.23&thinsp;%). However, the procedure of the Arosa triad gives monthly values of σ&thinsp; = &thinsp;0.5&thinsp;%. In this work, two ozone data sets are analysed: the first includes all the ozone measurements available, while the second only includes the simultaneous measurements of all three instruments. Furthermore, this paper also describes the Langley method used to determine the extraterrestrial constant (ETC) for the RBCC-E triad, the necessary first step toward accurate ozone calculation. Finally, the short-term or intraday consistency is also studied to identify the effect of the solar zenith angle on the precision of the RBCC-E triad.</p

    The site-specific primary calibration conditions for the Brewer spectrophotometer

    Get PDF
    The Brewer ozone spectrophotometer (the Brewer) is one of the World Meteorological Organization (WMO) Global Atmosphere Watch (GAW)'s standard ozone-monitoring instruments since the 1980s. The entire global Brewer ozone-monitoring network is operated and maintained via a hierarchical calibration chain, which started from world reference instruments that are independently calibrated via the primary calibration method (PCM) at a premium site (National Oceanic and Atmospheric Administration's (NOAA) Mauna Loa Observatory, Hawaii). These world reference instruments have been maintained by Environment and Climate Change Canada (ECCC) in Toronto for the last 4 decades. Their calibration is transferred to the travelling standard instrument and then to network (field) Brewer instruments at their monitoring sites (all via the calibration transfer method; CTM). Thus, the measurement accuracy for the entire global network is dependent on the calibration of world reference instruments. In 2003, to coordinate regional calibration needs, the Regional Brewer Calibration Center for Europe (RBCC-E) was formed in Izaña, Spain. From that point, RBCC-E began calibrating regional references also via PCM instead of CTM. The equivalency and consistency of world and regional references are then assured during international calibration campaigns. In practice, these two calibration methods have different physical requirements, e.g., the PCM requires a stable ozone field in the short term (i.e., half-day), while the CTM would benefit from larger changes in slant ozone conditions for the calibration periods. This difference dictates that the PCM can only be implemented on Brewer instruments at certain sites and even in certain months of the year. This work is the first effort to use long-term observation records from 11 Brewer instruments at four sites to reveal the challenges in performing the PCM. By utilizing a new calibration simulation model and reanalysis ozone data, this work also quantifies uncertainties in the PCM due to short-term ozone variability. The results are validated by real-world observations and used to provide scientific advice on where and when the PCM can be performed and how many days of observations are needed to achieve the calibration goal (i.e., ensure the calibration uncertainty is within a determined criterion, i.e., ≤5 R6 units; R6 is a measurement-derived double ratio in the actual Brewer processing algorithm). This work also suggests that even if the PCM cannot be used to deliver final calibration results for mid- or high-latitude sites, the statistics of the long-term PCM fitting results can still provide key information for field Brewer instruments as stability indicators (which would provide performance monitoring and data quality assurance).</p

    Almost one year of TROPOMI/S5P total ozone column data: global ground-based validation

    Get PDF
    Póster presentado en: ATMOS 2018, celebrado en Salzburgo (Austria) del 26 al 29 de noviembre de 2018.In this work we present the validation results of almost one year of TROPOMI Near Real Time (NRTI) and OFFLine (OFFL) data against ground-based quality-assured Brewer and Dobson total ozone column (TOC) measurements deposited in the World Ozone and Ultraviolet Radiation Data Center (WOUDC). Additionally, comparisons to Brewer measurements from the European Brewer Network (EUBREWNET) and the Canadian Network are performed, as well as to twilight zenith-sky measurements obtained with ZSL-DOAS (Zenith Scattered Light Differential Optical Absorption Spectroscopy) instruments, that form part of the SAOZ network (Système d'Analyse par Observation Zénitale) of the Network for the Detection of Atmospheric Composition Change (NDACC). Through the comparison of the TROPOMI measurements to the total ozone ground-based measurements from stations that are distributed globally, as the background truth, the dependence of the new instrument on latitude, cloud properties, solar zenith and viewing angles, among others, is examined. Validation results show that the mean bias and the standard deviation of the percentage difference between TROPOMI and QA ground TOC meet the product requirements
    corecore