240 research outputs found

    Measurement of Cosmic Ray Primary Energy with the Atmospheric Cherenkov Light Technique in Extensive Air Showers

    Get PDF
    The advantage and problems of the primary energy measurement using the Cherenkov light from extensive air showers are discussed. The problem of absolute energy calibration has been solved during the analysis of the data of complex QUEST experiment at the EAS-TOP array. The results of QUEST experiment has been used for the analysis of the data of pure Cherenkov light array Tunka

    On the determination of the depth of EAS development maximum using the lateral distribution of Cerenkov light at distances 150 m from EAS axis

    Get PDF
    The Samarkand extensive air showers (EAS) array was used to measure the mean and individual lateral distribution functions (LDF) of EAS Cerenkov light. The analysis of the individual parameters b showed that the mean depth of EAS maximum and the variance of the depth distribution of maxima of EAS with energies of approx. 2x10 to the 15th power eV can properly be described in terms of Kaidalov-Martirosyan quark-gluon string model (QGSM)

    The experimental cascade curves of EAS at E sub 0 10(17) eV obtained by the method of detection of Cherenkov pulse shape

    Get PDF
    The individual cascade curves of EAS with E sub 0 10 to the 17th power eV/I to 3/ were studied by detection of EAS Cherenkov light pulses. The scintillators located at the center of the Yakutsk EAS array within a 500-m radius circle were used to select the showers and to determine the main EAS parameters. The individual cascade curves N(t) were obtained using the EAS Cherenkov light pulses satisfying the following requirements: (1) the signal-to-noise ratio fm/delta sub n 15, (2) the EAS axis-detector distance tau sub 350 m, (3) the zenith angle theta 30 deg, (4) the probability for EAS to be detected by scintillators W 0.8. Condition (1) arises from the desire to reduce the amplitude distortion of Cherenkov pulses due to noise and determines the range of EAS sizes, N(t). The resolution times of the Cherenkov pulse shape detectors are tau sub 0 approx. 23 ns which results in distortion of a pulse during the process of the detection. The distortion of pulses due to the finiteness of tau sub 0 value was estimated. It is shown that the rise time of pulse becomes greater as tau sub 0.5/tau sub 0 ratio decreases

    The Tunka Experiment: Towards a 1-km^2 Cherenkov EAS Array in the Tunka Valley

    Full text link
    The project of an EAS Cherenkov array in the Tunka valley/Siberia with an area of about 1 km^2 is presented. The new array will have a ten times bigger area than the existing Tunka-25 array and will permit a detailed study of the cosmic ray energy spectrum and the mass composition in the energy range from 10^15 to 10^18 eV.Comment: 3 pages, 2 figures, to be published in IJMP
    corecore