17 research outputs found

    In vitro assessment of the combined effect of eicosapentaenoic acid, green tea extract and curcumin C3 on protein loss in C2C12 myotubes

    Get PDF
    EPA has been clinically shown to reduce muscle wasting during cancer cachexia. This study investigates whether curcumin or green tea extract (GTE) enhances the ability of low doses of eicosapentaenoic acid (EPA) to reduce loss of muscle protein in an in vitro model. A low dose of EPA with minimal anti-cachectic activity was chosen to evaluate any potential synergistic effect with curcumin or GTE. Depression of protein synthesis and increase in degradation was determined in C2C12 myotubes in response to tumour necrosis factor-α (TNF-α) and proteolysis-inducing factor (PIF). EPA (50 μM) or curcumin (10 μg ml−1) alone had little effect on protein degradation caused by PIF but the combination produced complete inhibition, as did the combination with GTE (10 μg ml−1). In response to TNF-α (25 ng ml−1)-induced protein degradation, EPA had a small, but not significant effect on protein degradation; however, when curcumin and GTE were combined with EPA, the effect was enhanced. EPA completely attenuated the depression of protein synthesis caused by TNF-α, but not that caused by PIF. The combination of EPA with curcumin produced a significant increase in protein synthesis to both agents. GTE alone or in combination with EPA had no effect on the depression of protein synthesis by TNF-α, but did significantly increase protein synthesis in PIF-treated cells. Both TNF-α and PIF significantly reduced myotube diameter from 17 to 13 μm for TNF-α (23.5%) and 15 μm (11.8%) for PIF However the triple combination of EPA, curcumin and GTE returned diameters to values not significantly different from the control. These results suggest that either curcumin or GTE or the combination could enhance the anti-catabolic effect of EPA on lean body mass

    American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on prevention of postoperative infection within an enhanced recovery pathway for elective colorectal surgery.

    Get PDF
    BACKGROUND: Colorectal surgery (CRS) patients are an at-risk population who are particularly vulnerable to postoperative infectious complications. Infectious complications range from minor infections including simple cystitis and superficial wound infections to life-threatening situations such as lobar pneumonia or anastomotic leak with fecal peritonitis. Within an enhanced recovery pathway (ERP), there are multiple approaches that can be used to reduce the risk of postoperative infections. METHODS: With input from a multidisciplinary, international group of experts and through a focused (non-systematic) review of the literature, and use of a modified Delphi method, we achieved consensus surrounding the topic of prevention of postoperative infection in the perioperative period for CRS patients. DISCUSSION: As a part of the first Perioperative Quality Initiative (POQI-1) workgroup meeting, we sought to develop a consensus statement describing a comprehensive, yet practical, approach for reducing postoperative infections, specifically for CRS within an ERP. Surgical site infection (SSI) is the most common postoperative infection. To reduce SSI, we recommend routine use of a combined isosmotic mechanical bowel preparation with oral antibiotics before elective CRS and that infection prevention strategies (also called bundles) be routinely implemented as part of colorectal ERPs. We recommend against routine use of abdominal drains. We also give consensus guidelines for reducing pneumonia, urinary tract infection, and central line-associated bloodstream infection (CLABSI)
    corecore