2,452 research outputs found
Development and fabrication of insulator seals for thermionic diodes
Eight different types of cermet seals for thermionic diodes were investigated: (1) 1 micron Al2O3 with Nb spheres; (2) 200 A Al2O3 with Nb spheres; (3) 1 micron Al2O3 with Nb 1% Zr spheres; (4) 200 A Al2O3 with Nb 1% Zr spheres; (5) Pure Y2O3 with Nb 1% Zr spheres; (6) Y2O3 3% ZrO2 with Nb 1% Zr spheres; (7) Y2O3 10% ZrO2 with Nb 1% Zr spheres; and (8) ZrO2 12% Y2O3 with Nb 1% Zr spheres. Investigations were made to determine the most favorable fabrication techniques and the effect of the bonding cycle, (length of bonding time and shutdown sequences). The analysis of the seals included tensile test, vacuum test, electrical test and metallurgical examination. At the conclusion of the development phase, 36 seals were fabricated for delivery for evaluation
Mott Transition, Compressibility Divergence and P-T Phase Diagram of Layered Organic Superconductors: An Ultrasonic Investigation
The phase diagram of the organic superconductor
-(BEDT-TTF)Cu[N(CN)Cl has been investigated by ultrasonic
velocity measurements under helium gas pressure. Different phase transitions
were identified trough several elastic anomalies characterized from isobaric
and isothermal sweeps. Our data reveal two crossover lines that end on the
critical point terminating the first-order Mott transition line. When the
critical point is approached along these lines, we observe a dramatic softening
of the velocity which is consistent with a diverging compressibility of the
electronic degrees of freedom.Comment: 4 pages, 5 figure
Reconciling Semiclassical and Bohmian Mechanics: II. Scattering states for discontinuous potentials
In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar
decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi
of the one-dimensional Schroedinger equation, such that the components Psi1 and
Psi2 approach their semiclassical WKB analogs in the large action limit.
Moreover, by applying the Madelung-Bohm ansatz to the components rather than to
Psi itself, the resultant bipolar Bohmian mechanical formulation satisfies the
correspondence principle. As a result, the bipolar quantum trajectories are
classical-like and well-behaved, even when Psi has many nodes, or is wildly
oscillatory. In this paper, the previous decomposition scheme is modified in
order to achieve the same desirable properties for stationary scattering
states. Discontinuous potential systems are considered (hard wall, step, square
barrier/well), for which the bipolar quantum potential is found to be zero
everywhere, except at the discontinuities. This approach leads to an exact
numerical method for computing stationary scattering states of any desired
boundary conditions, and reflection and transmission probabilities. The
continuous potential case will be considered in a future publication.Comment: 18 pages, 8 figure
Role of doped layers in dephasing of 2D electrons in quantum well structures
The temperature and gate voltage dependences of the phase breaking time are
studied experimentally in GaAs/InGaAs heterostructures with single quantum
well. It is shown that appearance of states at the Fermi energy in the doped
layers leads to a significant decrease of the phase breaking time of the
carriers in quantum well and to saturation of the phase breaking time at low
temperature.Comment: 4 pages, 6 figure
Phenomenological model of elastic distortions near the spin-Peierls transition in
A phenomenological model of the Landau type forms the basis for a study of
elastic distortions near the spin-Peierls transition in . The
atomic displacements proposed by Hirota {\it et al.} [Phys. Rev. Lett. {\bf
73}, 736 (1994)] are accounted for by the model which includes linear coupling
between and distortions. displacements are seen to be responsible
for anomalies in the elastic properties {\it at} , whereas incipient
distortions give rise to temperature dependence below . A discussion of
possible critical behavior is also made.Comment: 1 figure available upon reques
Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials
In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar
decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi
of the one-dimensional Schroedinger equation, such that the components Psi1 and
Psi2 approach their semiclassical WKB analogs in the large action limit. The
corresponding bipolar quantum trajectories, as defined in the usual Bohmian
mechanical formulation, are classical-like and well-behaved, even when Psi has
many nodes, or is wildly oscillatory. A modification for discontinuous
potential stationary stattering states was presented in a second paper [J.
Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials
is given here. The result is an exact quantum scattering methodology using
classical trajectories. For additional convenience in handling the tunneling
case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure
Electron-electron interaction at decreasing
The contribution of the electron-electron interaction to conductivity is
analyzed step by step in gated GaAs/InGaAs/GaAs heterostructures with different
starting disorder. We demonstrate that the diffusion theory works down to , where is the Fermi quasimomentum, is the mean free
paths. It is shown that the e-e interaction gives smaller contribution to the
conductivity than the interference independent of the starting disorder and its
role rapidly decreases with decrease.Comment: 5 pages, 6 figure
- …