1,148 research outputs found

    Condensates of Strongly-interacting Atoms and Dynamically Generated Dimers

    Full text link
    In a system of atoms with large positive scattering length, weakly-bound diatomic molecules (dimers) are generated dynamically by the strong interactions between the atoms. If the atoms are modeled by a quantum field theory with an atom field only, condensates of dimers cannot be described by the mean-field approximation because there is no field associated with the dimers. We develop a method for describing dimer condensates in such a model based on the one-particle-irreducible (1PI) effective action. We construct an equivalent 1PI effective action that depends not only on the classical atom field but also on a classical dimer field. The method is illustrated by applying it to the many-body behavior of bosonic atoms with large scattering length at zero temperature using an approximation in which the 2-atom amplitude is treated exactly but irreducible NN-atom amplitudes for N≥3N \ge 3 are neglected. The two 1PI effective actions give identical results for the atom superfluid phase, but the one with a classical dimer field is much more convenient for describing the dimer superfluid phase. The results are also compared with previous work on the Bose gas near a Feshbach resonance.Comment: 10 figure

    Effects of hadronic loops on the direct CP violation of BcB_{c}

    Full text link
    It is well known that the final state interaction plays an important role in the decays of BB-meson. The contribution of the final state interaction which is supposed to be long-distance effects, to the concerned processes can interfere with that of the short-distance effects produced via the tree and/or loop diagrams at quark-gluon level. The interference may provide a source for the direct CP violation ACP\mathcal{A}_{CP} in the process Bc+→D0π+B_{c}^{+}\to D^{0}\pi^{+}. We find that a typical value of ACP\mathcal{A}_{CP} when the final state interaction effect is taken into account can be about -22% which is different from that without the final state interaction effect. Therefore, when we extract information on CP violation from the data which will be available at LHCb and the new experiments in BB-factories, the contribution from the final state interaction must be included. This study may be crucial for searching new physics in the future.Comment: 15 pages, 3 figures, 2 tables. More discussion adde

    An Effective Field Theory Look at Deep Inelastic Scattering

    Full text link
    This talk discusses the effective field theory view of deep inelastic scattering. In such an approach, the standard factorization formula of a hard coefficient multiplied by a parton distribution function arises from matching of QCD onto an effective field theory. The DGLAP equations can then be viewed as the standard renormalization group equations that determines the cut-off dependence of the non-local operator whose forward matrix element is the parton distribution function. As an example, the non-singlet quark splitting functions is derived directly from the renormalization properties of the non-local operator itself. This approach, although discussed in the literature, does not appear to be well known to the larger high energy community. In this talk we give a pedagogical introduction to this subject.Comment: 11 pages, 1 figure, To appear in Modern Physics Letters

    QED Electrical Conductivity using the 2PI Effective Action

    Full text link
    In this article we calculate the electrical conductivity in QED using the 2PI effective action. We use a modified version of the usual 2PI effective action which is defined with respect to self-consistent solutions of the 2-point functions. We show that the green functions obtained from this modified effective action satisfy ward identities and that the conductivity obtained from the kubo relation is gauge invariant. We work to 3-loop order in the modified 2PI effective action and show explicitly that the resulting expression for the conductivity contains the square of the amplitude that corresponds to all binary collision and production processes.Comment: 24 pages, 21 figure

    Transverse-momentum distributions in a diquark spectator model

    Full text link
    All the leading-twist parton distribution functions are calculated in a spectator model of the nucleon, using scalar and axial-vector diquarks. Single gluon rescattering is used to generate T-odd distribution functions. Different choices for the diquark polarization states are considered, as well as a few options for the form factor at the nucleon-quark-diquark vertex. The results are listed in analytic form and interpreted in terms of light-cone wave functions. The model parameters are fixed by reproducing the phenomenological parametrization of unpolarized and helicity parton distributions at the lowest available scale. Predictions for the other parton densities are given and, whenever possible, compared with available phenomenological parametrizations.Comment: 42 pages, 13 figures in .eps format. RevTeX style. Minor typos corrected, added one referenc

    Induced current in the presence of magnetic flux tube of small radius

    Full text link
    The induced current density, corresponding to the massless Dirac equation in (2+1) dimensions in a magnetic flux tube of small radius is considered. This problem is important for graphene. In the case, when an electron can not penetrate the region of nonzero magnetic field, this current is the odd periodical function of the magnetic flux. If the region inside the magnetic tube is not forbidden for penetration of electron, the induced current is not a periodical function of the magnetic flux. However in the limit R→0R\to 0, where RR is the radius of magnetic flux tube, this function has the universal form which is independent of the magnetic field distribution inside the magnetic tube at fixed value of the magnetic flux.Comment: 5 pages, 1 figur

    Cosmology With Many Light Scalar Fields: Stochastic Inflation and Loop Corrections

    Full text link
    We explore the consequences of the existence of a very large number of light scalar degrees of freedom in the early universe. We distinguish between participator and spectator fields. The former have a small mass, and can contribute to the inflationary dynamics; the latter are either strictly massless or have a negligible VEV. In N-flation and generic assisted inflation scenarios, inflation is a co-operative phenomenon driven by N participator fields, none of which could drive inflation on their own. We review upper bounds on N, as a function of the inflationary Hubble scale H. We then consider stochastic and eternal inflation in models with N participator fields showing that individual fields may evolve stochastically while the whole ensemble behaves deterministically, and that a wide range of eternal inflationary scenarios are possible in this regime. We then compute one-loop quantum corrections to the inflationary power spectrum. These are largest with N spectator fields and a single participator field, and the resulting bound on N is always weaker than those obtained in other ways. We find that loop corrections to the N-flation power spectrum do not scale with N, and thus place no upper bound on the number of participator fields. This result also implies that, at least to leading order, the theory behaves like a composite single scalar field. In order to perform this calculation, we address a number of issues associated with loop calculations in the Schwinger-Keldysh "in-in" formalism.Comment: Typos corrected. Matches published versio

    Nonperturbative calculation of the anomalous magnetic moment in the Yukawa model within truncated Fock space

    Full text link
    Within the covariant formulation of light-front dynamics, we calculate the state vector of a physical fermion in the Yukawa model. The state vector is decomposed in Fock sectors and we consider the first three ones: the single constituent fermion, the constituent fermion coupled to one scalar boson, and the constituent fermion coupled to two scalar bosons. This last three-body sector generates nontrivial and nonperturbative contributions to the state vector, which are calculated numerically. Field-theoretical divergences are regularized using Pauli-Villars fermion and boson fields. Physical observables can be unambiguously deduced using a systematic renormalization scheme we have developed previously. As a first application, we consider the anomalous magnetic moment of the physical fermion.Comment: 24 pages, 16 figure

    Gauge Coupling Beta Functions in the Standard Model to Three Loops

    Full text link
    In this paper we compute the three-loop corrections to the beta functions of the three gauge couplings in the Standard Model of particle physics using the minimal subtraction scheme and taking into account Yukawa and Higgs self couplings.Comment: 4 pages, 1 figure, v2: minor changes, references adde

    Anomaly Matching Conditions in Supersymmetric Gauge Theories

    Get PDF
    Sufficient conditions are proven for 't Hooft's consistency conditions to hold at points in the moduli space of supersymmetric gauge theories. Known results for anomaly matching in supersymmetric QCD are rederived as a sample application of the results. The results can be used to show that the anomaly matching conditions hold for s-confining theories.Comment: 14 pages, revte
    • …
    corecore