1,189 research outputs found

    The spin-double refraction in two-dimensional electron gas

    Full text link
    We briefly review the phenomenon of the spin-double refraction that originates at an interface separating a two-dimensional electron gas with Rashba spin-orbit coupling from a one without. We demonstrate how this phenomenon in semiconductor heterostructures can produce and control a spin-polarized current without ferromagnetic leads

    Evidence for reduced magnetic braking in polars from binary population models

    Get PDF
    We present the first population synthesis of synchronous magnetic cataclysmic variables, called polars, taking into account the effect of the white dwarf (WD) magnetic field on angular momentum loss. We implemented the reduced magnetic braking (MB) model proposed by Li, Wu & Wickramasinghe into the Binary Stellar Evolution (BSE) code recently calibrated for cataclysmic variable (CV) evolution. We then compared separately our predictions for polars and non-magnetic CVs with a large and homogeneous sample of observed CVs from the Sloan Digital Sky Survey. We found that the predicted orbital period distributions and space densities agree with the observations if period bouncers are excluded. For polars, we also find agreement between predicted and observed mass transfer rates, while the mass transfer rates of non-magnetic CVs with periods ≳3 h drastically disagree with those derived from observations. Our results provide strong evidence that the reduced MB model for the evolution of highly magnetized accreting WDs can explain the observed properties of polars. The remaining main issues in our understanding of CV evolution are the origin of the large number of highly magnetic WDs, the large scatter of the observed mass transfer rates for non-magnetic systems with periods ≳3 h, and the absence of period bouncers in observed samples

    A Literature review on Balancing Workload in Cloud Computing

    Get PDF
    Cloud computing is the realistic evolution of information technology in a world that is learning to be more and more based on the division of work. Cloud computing offers many principles that are long accomplished in other industries to the IT. We focus on basic characteristics of cloud computing help you understand them. A pattern language is used to interconnecting set of cloud patterns. A cloud pattern is a small human readable document of a well-defined format describing a good solution to a cloud related problem. We studied and captured such patterns describing different types of clouds, the offerings they provide and how to build application with them. In this paper we mainly focus on different types of application workload patterns. Pattern for application workloads describe different user behavior resulting in changing utilization of IT resources hosting an application. Having motivated the need for cloud offerings to handle different workloads we introduce common cloud service models that describe different styles to offer IT resources on different levels of an application stack. Furthermore we also discuss how the corresponding service models and cloud deployment models enable the cloud computing properties

    Bond strength of plasma sprayed ceramic coatings on the phosphated steels

    Get PDF
    In the presented work, results of adhesion measurements for different systems of steel sheet-phosphate interlayer-ceramiccoating are described. The interlayers were produced by zinc phosphating; alumina, olivine and zirconiasilica-alumina (e.g. eucor) coatings were deposited by water stabilized plasma torch WSP®. However, successful application of the WSP technique depends on the choice of correct deposition parameters preserving the hydrated phosphates from thermal destruction by the molten ceramic particles. For the adhesion measurement ISO 4624standardized test was used. Corrosion resistivity was measured by polarisation resistance and free corrosion potential in 3 % NaCl solution. Key words

    Formation of quantum dots in the potential fluctuations of InGaAs heterostructures probed by scanning gate microscopy

    Full text link
    The disordered potential landscape in an InGaAs/InAlAs two-dimensional electron gas patterned into narrow wires is investigated by means of scanning gate microscopy. It is found that scanning a negatively charged tip above particular sites of the wires produces conductance oscillations that are periodic in the tip voltage. These oscillations take the shape of concentric circles whose number and diameter increase for more negative tip voltages until full depletion occurs in the probed region. These observations cannot be explained by charging events in material traps, but are consistent with Coulomb blockade in quantum dots forming when the potential fluctuations are raised locally at the Fermi level by the gating action of the tip. This interpretation is supported by simple electrostatic simulations in the case of a disorder potential induced by ionized dopants. This work represents a local investigation of the mechanisms responsible for the disorder-induced metal-to-insulator transition observed in macroscopic two-dimensional electron systems at low enough density

    Scanning Gate Spectroscopy of transport across a Quantum Hall Nano-Island

    Full text link
    We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.Comment: 13 pages, 3 figure

    Scanning-gate microscopy of semiconductor nanostructures: an overview

    Full text link
    This paper presents an overview of scanning-gate microscopy applied to the imaging of electron transport through buried semiconductor nanostructures. After a brief description of the technique and of its possible artifacts, we give a summary of some of its most instructive achievements found in the literature and we present an updated review of our own research. It focuses on the imaging of GaInAs-based quantum rings both in the low magnetic field Aharonov-Bohm regime and in the high-field quantum Hall regime. In all of the given examples, we emphasize how a local-probe approach is able to shed new, or complementary, light on transport phenomena which are usually studied by means of macroscopic conductance measurements.Comment: Invited talk by SH at 39th "Jaszowiec" International School and Conference on the Physics of Semiconductors, Krynica-Zdroj, Poland, June 201

    Imaging Electron Wave Functions Inside Open Quantum Rings

    Full text link
    Combining Scanning Gate Microscopy (SGM) experiments and simulations, we demonstrate low temperature imaging of electron probability density Ψ2(x,y)|\Psi|^{2}(x,y) in embedded mesoscopic quantum rings (QRs). The tip-induced conductance modulations share the same temperature dependence as the Aharonov-Bohm effect, indicating that they originate from electron wavefunction interferences. Simulations of both Ψ2(x,y)|\Psi|^{2}(x,y) and SGM conductance maps reproduce the main experimental observations and link fringes in SGM images to Ψ2(x,y)|\Psi|^{2}(x,y).Comment: new titl

    Local Density of States in Mesoscopic Samples from Scanning Gate Microscopy

    Full text link
    We study the relationship between the local density of states (LDOS) and the conductance variation ΔG\Delta G in scanning-gate-microscopy experiments on mesoscopic structures as a charged tip scans above the sample surface. We present an analytical model showing that in the linear-response regime the conductance shift ΔG\Delta G is proportional to the Hilbert transform of the LDOS and hence a generalized Kramers-Kronig relation holds between LDOS and ΔG\Delta G. We analyze the physical conditions for the validity of this relationship both for one-dimensional and two-dimensional systems when several channels contribute to the transport. We focus on realistic Aharonov-Bohm rings including a random distribution of impurities and analyze the LDOS-ΔG\Delta G correspondence by means of exact numerical simulations, when localized states or semi-classical orbits characterize the wavefunction of the system.Comment: 8 pages, 8 figure
    corecore