9,910 research outputs found

    Relativistic semiclassical approach in strong-field nonlinear photoionization

    Get PDF
    Nonlinear relativistic ionization phenomena induced by a strong laser radiation with elliptically polarization are considered. The starting point is the classical relativistic action for a free electron moving in the electromagnetic field created by a strong laser beam. The application of the relativistic action to the classical barrier-suppression ionization is briefly discussed. Further the relativistic version of the Landau-Dykhne formula is employed to consider the semiclassical sub-barrier ionization. Simple analytical expressions have been found for: (i) the rates of the strong-field nonlinear ionization including relativistic initial and final state effects; (ii) the most probable value of the components of the photoelectron final state momentum; (iii) the most probable direction of photoelectron emission and (iv) the distribution of the photoelectron momentum near its maximum value.Comment: 13 pages, 3 figures, to be published in Phys. Rev.

    Heat sterilizable and impact resistant Ni-Cd battery development Quarterly report, 1 Apr. - 30 Jun. 1969

    Get PDF
    Electrochemistry, battery engineering, and impact tests of heat sterilizable nickel cadmium cell

    Relativistic photoelectron spectra in the ionization of atoms by elliptically polarized light

    Get PDF
    Relativistic tunnel ionization of atoms by intense, elliptically polarized light is considered. The relativistic version of the Landau-Dykhne formula is employed. The general analytical expression is obtained for the relativistic photoelectron spectra. The most probable angle of electron emission, the angular distribution near this angle, the position of the maximum and the width of the energy spectrum are calculated. In the weak field limit we obtain the familiar non-relativistic results. For the case of circular polarization our analytical results are in agreement with recent derivations of Krainov [V.P. Krainov, J. Phys. B, {\bf 32}, 1607 (1999)].Comment: 8 pages, 2 figures, accepted for publication in Journal of Physics

    X-ray observations of the compact central object in supernova remnant G347.3-0.5

    Full text link
    We present Chandra, XMM-Newton and RXTE observations of 1WGA J1713.4-3949, a compact source at the center of the galactic supernova remnant (SNR) G347.3-0.5. The X-ray spectrum of the source is well-fitted by the sum of a blackbody component with a temperature of about 0.4 keV plus a power law component with photon index about 4. We found no pulsations down to 4% in the 0.01-0.16 Hz range and down to 25% in the 0.01-128 Hz range. This source resembles other compact central objects (CCOs) in SNRs, and we suggest that 1WGA J1713.4-3949 is the associated neutron star for G347.3--0.5. We also measured the properties of the adjacent radio pulsar PSR J1713-3945 with a 392 ms period and show that it is not associated with 1WGA J1713.4-3949 nor, most probably, with SNR G347.3-0.5 as well.Comment: 8 pages, 2 figures, accepted for publication in ApJ Letter

    ELKO Spinor Fields: Lagrangians for Gravity derived from Supergravity

    Full text link
    Dual-helicity eigenspinors of the charge conjugation operator (ELKO spinor fields) belong -- together with Majorana spinor fields -- to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class-(5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three respectively corresponding to flagpole, flag-dipole and Weyl spinor fields. Using the mapping from ELKO spinor fields to the three classes Dirac spinor fields, it is shown that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), as the prime Lagrangian for supergravity. The Holst action is related to the Ashtekar's quantum gravity formulation. To each one of these classes, there corresponds a unique kind of action for a covariant gravity theory. Furthermore we consider the necessary and sufficient conditions to map Dirac spinor fields (DSFs) to ELKO, in order to naturally extend the Standard Model to spinor fields possessing mass dimension one. As ELKO is a prime candidate to describe dark matter and can be obtained from the DSFs, via a mapping explicitly constructed that does not preserve spinor field classes, we prove that in particular the Einstein-Hilbert, Einstein-Palatini, and Holst actions can be derived from the QSL, as a fundamental Lagrangian for supergravity, via ELKO spinor fields. The geometric meaning of the mass dimension-transmuting operator - leading ELKO Lagrangian into the Dirac Lagrangian - is also pointed out, together with its relationship to the instanton Hopf fibration.Comment: 11 pages, RevTeX, accepted for publication in Int.J.Geom.Meth.Mod.Phys. (2009

    Characterisation of Epstein-Barr virus-specific memory T cells from the peripheral blood of seropositive individuals.

    Get PDF
    We have investigated the regression phenomenon which occurs when EBV-infected peripheral blood mononuclear cells from seropositive individuals are cultured for one month at high cell concentration and have confirmed that regression is mediated by E+ lymphocytes. When helper/inducer (Leu 3a+) and suppressor/cytotoxic (Leu 2a+) cells are separated by fluorescence-activated cell sorting from fresh peripheral blood and co-cultured with EBV-infected autologous E- mononuclear cells, regression only regularly occurs in cultures receiving suppressor/cytotoxic lymphocytes. Titration experiments show that suppressor/cytotoxic lymphocytes are more active in the regression assay that unfractionated E+ cells. When Ia+ E+ and Ia- E+ cells are separated one week after initiation of co-cultures of E+ cells and EBV-infected E- cells, both Ia+ E+ and Ia- E+ cells are active in the regression assay although regression occurs earlier in cultures receiving Ia+ E+ cells. Experiments in which NK cells are isolated using the monoclonal antibodies H25 and H366 show that NK cells do not influence the regression phenomenon in normal individuals

    Discovery of Two High-Magnetic-Field Radio Pulsars

    Get PDF
    We report the discovery of two young isolated radio pulsars with very high inferred magnetic fields. PSR J1119-6127 has period P = 0.407 s, and the largest period derivative known among radio pulsars, Pdot = 4.0e-12. Under standard assumptions these parameters imply a characteristic spin-down age of only tau = 1.6 kyr and a surface dipole magnetic field strength of B = 4.1e13 G. We have measured a stationary period-second-derivative for this pulsar, resulting in a braking index of n = 2.91+-0.05. We have also observed a glitch in the rotation of the pulsar, with fractional period change Delta_P/P = -4.4e-9. Archival radio imaging data suggest the presence of a previously uncataloged supernova remnant centered on the pulsar. The second pulsar, PSR J1814-1744, has P = 3.975 s and Pdot = 7.4e-13. These parameters imply tau = 85 kyr, and B = 5.5e13 G, the largest of any known radio pulsar. Both PSR J1119-6127 and PSR J1814-1744 show apparently normal radio emission in a regime of magnetic field strength where some models predict that no emission should occur. Also, PSR J1814-1744 has spin parameters similar to the anomalous X-ray pulsar (AXP) 1E 2259+586, but shows no discernible X-ray emission. If AXPs are isolated, high magnetic field neutron stars (``magnetars''), these results suggest that their unusual attributes are unlikely to be merely a consequence of their very high inferred magnetic fields.Comment: 7 pages, 3 embedded EPS figures, to be published in Ap

    Abelian Magnetic Monopoles and Topologically Massive Vector Bosons in Scalar-Tensor Gravity with Torsion Potential

    Full text link
    A Lagrangian formulation describing the electromagnetic interaction - mediated by topologically massive vector bosons - between charged, spin-(1/2) fermions with an abelian magnetic monopole in a curved spacetime with non-minimal coupling and torsion potential is presented. The covariant field equations are obtained. The issue of coexistence of massive photons and magnetic monopoles is addressed in the present framework. It is found that despite the topological nature of photon mass generation in curved spacetime with isotropic dilaton field, the classical field theory describing the nonrelativistic electromagnetic interaction between a point-like electric charge and magnetic monopole is inconsistent.Comment: 18 pages, no figure

    On the Connection Between Metal Absorbers and Quasar Nebulae

    Get PDF
    We establish a simple model for the distribution of cold gas around L* galaxies using a large set of observational constraints on the properties of strong MgII absorber systems. Our analysis suggests that the halos of L* galaxies are filled with cool gaseous clouds having sizes of order 1kpc and densities of ~10^{-2} cm^{-3}. We then investigate the physical effects of cloud irradiation by a quasar and study the resulting spectral signatures. We show that quasar activity gives rise to (i) extended narrow-line emission on ~100kpc scales and (ii) an anisotropy in the properties of the absorbing gas arising from the geometry of the quasar radiation field. Provided that quasars reside in halos several times more massive than those of L* galaxies, our model predictions appear to be in agreement with observations of narrow emission-line nebulae around quasars and the recent detections of ~100kpc cold gaseous envelopes around those objects, suggesting a common origin for these phenomena. We discuss the implications of our results for understanding absorption systems, probing quasar environments at high redshifts, and testing the quasar unification scheme.Comment: 15 pages, 13 figures (ApJ submitted

    Heat sterilizable and impact resistant Ni-Cd battery development Quarterly report, 1 Jan. - 31 Mar. 1969

    Get PDF
    Research and development of heat sterilizable impact resistant nickel cadmium batterie
    • 

    corecore