203 research outputs found

    Hole-doping induced ferromagnetism in 2D materials

    Full text link
    Two-dimensional (2D) ferromagnetic materials are considered as promising candidates for the future generations of spintronic devices. Yet, 2D materials with intrinsic ferromagnetism are scarce. High-throughput first-principles simulations are performed in order to screen 2D materials that present a non-magnetic to a ferromagnetic transition upon hole doping. A global evolutionary search is subsequently performed, in order to identify alternative possible atomic structures of the eligible candidates, and 122 materials exhibiting a hole-doping induced ferromagnetism are identified. Their energetic and dynamic stability, as well as their magnetic properties under hole doping are investigated systematically. Half of these 2D materials are metal halides, followed by chalcogenides, oxides and nitrides, some of them having predicted Curie temperatures above 300 K. The exchange interactions responsible for the ferromagnetic order in these 2D materials are also discussed. This work not only provides theoretical insights into hole-doped 2D ferromagnetic materials, but also enriches the family of 2D magnetic materials for possible spintronic applications

    Six-dimensional Davidson potential as a dynamical symmetry of the symplectic Interacting Vector Boson Model

    Get PDF
    A six-dimensional Davidson potential, introduced within the framework of the Interacting Vector Boson Model (IVBM), is used to describe nuclei that exhibit transitional spectra between the purely rotational and vibrational limits of the theory. The results are shown to relate to a new dynamical symmetry that starts with the Sp(12,R)SU(1,1)×SO(6)Sp(12,R) \supset SU(1,1) \times SO(6) reduction. Exact solutions for the eigenstates of the model Hamiltonian in the basis defined by a convenient subgroup chain of SO(6) are obtained. A comparison of the theoretical results with experimental data for heavy nuclei with transitional spectra illustrates the applicability of the theory.Comment: 9 pages, 4 figure

    Interface barriers at the interfaces of polar GaAs(111) faces with Al2O3

    Get PDF
    Internal photoemission measurements of barriers for electrons at interfaces between GaAs(111) and atomic-layer deposited Al2O3 indicate that changing the GaAs polar crystal face orientation from the Ga-terminated (111)A to the As-terminated (111)B has no effect on the barrier height and remains the same as at the non-polar GaAs(100)/Al2O3 interface. Moreover, the presence of native oxide on GaAs(111) or passivation of this surface with sulphur also have no measurable influence on the GaAs(111)/Al2O3 barrier. These results suggest that the orientation and composition-sensitive surface dipoles conventionally observed at GaAs surfaces are effectively compensated at GaAs/oxide interfaces. (C) 2012 American Institute of Physics. (http://dx.doi.org/10.1063/1.3698461

    Band offsets and trap-related electron transitions at interfaces of (100)InAs with atomic-layer deposited Al2O3

    Get PDF
    Spectral analysis of optically excited currents in single-crystal (100)InAs/amorphous (a-)Al2O3/metal structures allows one to separate contributions stemming from the internal photoemission (IPE) of electrons into alumina and from the trapping-related displacement currents. IPE spectra suggest that the out-diffusion of In and, possibly, its incorporation in a-Al2O3 lead to the development of ≈0.4 eV wide conduction band (CB) tail states. The top of the InAs valence band is found at 3.45 ± 0.10 eV below the alumina CB bottom, i.e., at the same energy as at the GaAs/a-Al2O3 interface. This corresponds to the CB and the valence band offsets at the InAs/a-Al2O3 interface of 3.1 ± 0.1 eV and 2.5 ± 0.1 eV, respectively. However, atomic-layer deposition of alumina on InAs results in additional low-energy electron transitions with spectral thresholds in the range of 2.0–2.2 eV, which is close to the bandgap of AlAs. The latter suggests the interaction of As with Al, leading to an interlayer containing Al-As bonds providing a lower barrier for electron injection

    Detailed Kinematic Study of the Ionized and Neutral Gas in the Complex of Star Formation in the Galaxy IC 1613

    Get PDF
    We carried out detailed kinematic studies of the complex of multiple HI and HII shells that represent the only region of ongoing star formation in the dwarf irregular galaxy IC 1613. We investigated the ionized-gas kinematics by using Fabry--Perot H-alpha observations with the 6-m Special Astrophysical Observatory telescope and the neutral-gas kinematics by using VLA 21-cm radio observations. We identified three extended (300-350 pc) neutral shells with which the brightest HII shells in the complex of star formation are associated. The neutral-gas kinematics in the complex has been studied for the first time and the H~I shells were found to expand at a velocity of 15--18 km/s. We constructed velocity ellipses for all HII shells in the complex and refined (increased) the expansion velocities of most of them. The nature of the interacting ionized and neutral shells is discussed.Comment: 14 pages, 9 EPS-figure

    Performance of the Genotype® MTBDRPlus assay in the diagnosis of tuberculosis and drug resistance in Samara, Russian Federation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Russia is a high tuberculosis (TB) burden country with a high prevalence of multidrug resistant tuberculosis (MDRTB). Molecular assays for detection of MDRTB on clinical specimens are not widely available in Russia.</p> <p>Results</p> <p>We performed an evaluation of the GenoType<sup>® </sup>MTBDRplus assay (HAIN Lifescience GmbH, Germany) on a total of 168 sputum specimens from individual patients at a public health laboratory in Central Russia, as a model of a middle income site in a region with high levels of drug resistance. Phenotypic drug resistance tests (DST) were performed on cultures derived from the same sputum specimens using the BACTEC 960 liquid media system.</p> <p>Interpretable GenoType<sup>® </sup>MTBDRplus results were obtained for 154(91.7%) specimens with readability rates significantly higher in sputum specimens graded 2+ and 3+ compared to 1+ (RR = 1.17 95%CI 1.04–1.32). The sensitivity and specificity of the assay for the detection of rifampicin (RIF) and isoniazid (INH) resistance and MDR was 96.2%, 97.4%, 97.1% and 90.7%, 83.3%, 88.9% respectively. Mutations in codon 531 of the <it>rpoB </it>gene and codon 315 of the <it>katG </it>gene dominated in RIF and INH resistant strains respectively. Disagreements between phenotypical and molecular tests results (12 samples) could be explained by the presence of rare mutations in strains circulating in Russia and simultaneous presence of resistant and sensitive bacilli in sputum specimens (heteroresistance).</p> <p>Conclusion</p> <p>High sensitivity, short turnaround times and the potential for screening large numbers of specimens rapidly, make the GenoType<sup>® </sup>MTBDRplus assay suitable as a first-line screening assay for drug resistant TB.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore