52 research outputs found

    Impact of Endoscopic Ultrasonography on (18)F-FDG-PET/CT Upfront Towards Patient Specific Esophageal Cancer Treatment

    Get PDF
    INTRODUCTION: In patients with potentially resectable esophageal cancer (EC), the value of endoscopic ultrasonography (EUS) after fluorine-18 labeled fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG-PET/CT) is questionable. Retrospectively, we assessed the impact of EUS after PET/CT on the given treatment in EC patients. METHODS: During the period 2009-2015, 318 EC patients were staged as T1-4aN0-3M0 with hybrid (18)F-FDG-PET/CT or (18)F-FDG-PET with CT and EUS if applicable in a nonspecific order. We determined the impact of EUS on the given treatment in 279 patients who also were staged with EUS. EUS had clinical consequences if it changed curability, extent of radiation fields or lymph node resection (AJCC stations 2-5), and when the performed fine-needle aspiration (FNA) provided conclusive information of suspicious lymph node. RESULTS: EUS had an impact in 80 (28.7%) patients; it changed the radiation field in 63 (22.6%), curability in 5 (1.8%), lymphadenectomy in 48 (17.2%), and FNA was additional in 21 (7.5%). In patients treated with nCRT (n = 194), EUS influenced treatment in 53 (27.3%) patients; in 38 (19.6%) the radiation field changed, in 3 (1.5%) the curability, in 35 (18.0%) the lymphadenectomy, and in 17 (8.8%) FNA was additional. EUS influenced both the extent of radiation field and nodal resection in 31 (16.0%) nCRT patients. CONCLUSIONS: EUS had an impact on the given treatment in approximately 29%. In most patients, the magnitude of EUS found expression in the extent of radiotherapy target volume delineation to upper/high mediastinal lymph nodes

    Short-Course External Beam Radiotherapy Versus Brachytherapy for Palliation of Dysphagia in Esophageal Cancer: A Matched Comparison of Two Prospective Trials

    Get PDF
    Introduction: Short-course external beam radiotherapy (EBRT) and intraluminal brachytherapy are both accepted treatments for the palliation of dysphagia in patients with incurable esophageal cancer. We compared the effects of both treatments from two prospective studies. Methods: We performed a multicenter prospective cohort study of patients with metastasized or otherwise incurable esophageal cancer requiring palliation of dysphagia from September 2016 to March 2019. Patients were treated with EBRT in five fractions of 4 Gy. Data were compared with all patients treated with a single brachytherapy dose of 12 Gy in the SIREC (Stent or Intraluminal Radiotherapy for inoperable Esophageal Cancer) trial, both between the original cohorts and between 1:1 propensity score–matched cohorts. The primary end point was an improvement of dysphagia at 3 months without reintervention. The secondary end points included toxicit

    Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial

    Get PDF
    Background: Neoadjuvant chemoradiotherapy (nCRT) plus surgery is a standard treatment for locally advanced oesophageal cancer. With this treatment, 29% of patients have a pathologically complete response in the resection specimen. This provides the rationale for investigating an active surveillance approach. The aim of this study is to assess the (cost-)effectiveness of active surveillance vs. standard oesophagectomy after nCRT for oesophageal cancer. Methods: This is a phase-III multi-centre, stepped-wedge cluster randomised controlled trial. A total of 300 patients with clinically complete response (cCR, i.e. no local or disseminated disease proven by histology) after nCRT will be randomised to show non-inferiority of active surveillance to standard oesophagectomy (non-inferiority margin 15%, intra-correlation coefficient 0.02, power 80%, 2-sided α 0.05, 12% drop-out). Patients will undergo a first clinical response evaluation (CRE-I) 4-6 weeks after nCRT, consisting of endoscopy with bite-on-bite biopsies of the primary tumour site and other suspected lesions. Clinically complete responders will undergo a second CRE (CRE-II), 6-8 weeks after CRE-I. CRE-II will include 18F-FDG-PET-CT, followed by endoscopy with bite-on-bite biopsies and ultra-endosonography plus fine needle aspiration of suspected lymph nodes and/or PET- positive lesions. Patients with cCR at CRE-II will be assigned to oesophagectomy (first phase) or active surveillance (second phase of the study). The duration of the first phase is determined randomly over the 12 centres, i.e., stepped-wedge cluster design. Patients in the active surveillance arm will undergo diagnostic evaluations similar to CRE-II at 6/9/12/16/20/24/30/36/48 and 60 months after nCRT. In this arm, oesophagectomy will be offered only to patients in whom locoregional regrowth is highly suspected or proven, without distant dissemination. The main study parameter is overall survival; secondary endpoints include percentage of patients who do not undergo surgery, quality of life, clinical irresectability (cT4b) rate, radical resection rate, postoperative complications, progression-free survival, distant dissemination rate, and cost-effectiveness. We hypothesise that active surveillance leads to non-inferior survival, improved quality of life and a reduction in costs, compared to standard oesophagectomy. Discussion: If active surveillance and surgery as needed after nCRT leads to non-inferior survival compared to standard oesophagectomy, this organ-sparing approach can be implemented as a standard of care

    Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: Study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)

    Get PDF
    Background: A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods: Thismulticentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2- week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged usingMRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 Ă— 2.0 Gy or 28 Ă— 1.8Gy in radiotherapy-naive patients, and 15 Ă— 2.0Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-termoncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion: This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections

    Induction chemotherapy followed by chemoradiotherapy versus chemoradiotherapy alone as neoadjuvant treatment for locally recurrent rectal cancer: study protocol of a multicentre, open-label, parallel-arms, randomized controlled study (PelvEx II)

    Get PDF
    Background A resection with clear margins (R0 resection) is the most important prognostic factor in patients with locally recurrent rectal cancer (LRRC). However, this is achieved in only 60 per cent of patients. The aim of this study is to investigate whether the addition of induction chemotherapy to neoadjuvant chemo(re)irradiation improves the R0 resection rate in LRRC. Methods This multicentre, international, open-label, phase III, parallel-arms study will enrol 364 patients with resectable LRRC after previous partial or total mesorectal resection without synchronous distant metastases or recent chemo- and/or radiotherapy treatment. Patients will be randomized to receive either induction chemotherapy (three 3-week cycles of CAPOX (capecitabine, oxaliplatin), four 2-week cycles of FOLFOX (5-fluorouracil, leucovorin, oxaliplatin) or FOLFORI (5-fluorouracil, leucovorin, irinotecan)) followed by neoadjuvant chemoradiotherapy and surgery (experimental arm) or neoadjuvant chemoradiotherapy and surgery alone (control arm). Tumours will be restaged using MRI and, in the experimental arm, a further cycle of CAPOX or two cycles of FOLFOX/FOLFIRI will be administered before chemoradiotherapy in case of stable or responsive disease. The radiotherapy dose will be 25 × 2.0 Gy or 28 × 1.8 Gy in radiotherapy-naive patients, and 15 × 2.0 Gy in previously irradiated patients. The concomitant chemotherapy agent will be capecitabine administered twice daily at a dose of 825 mg/m2 on radiotherapy days. The primary endpoint of the study is the R0 resection rate. Secondary endpoints are long-term oncological outcomes, radiological and pathological response, toxicity, postoperative complications, costs, and quality of life. Discussion This trial protocol describes the PelvEx II study. PelvEx II, designed as a multicentre, open-label, phase III, parallel-arms study, is the first randomized study to compare induction chemotherapy followed by neoadjuvant chemo(re)irradiation and surgery with neoadjuvant chemo(re)irradiation and surgery alone in patients with locally recurrent rectal cancer, with the aim of improving the number of R0 resections
    • …
    corecore