303 research outputs found

    Hypothesis of path integral duality: Applications to QED

    Full text link
    We use the modified propagator for quantum field based on a ``principle of path integral duality" proposed earlier in a paper by Padmanabhan to investigate several results in QED. This procedure modifies the Feynman propagator by the introduction of a fundamental length scale. We use this modified propagator for the Dirac particles to evaluate the first order radiative corrections in QED. We find that the extra factor of the modified propagator acts like a regulator at the Planck scales thereby removing the divergences that otherwise appear in the conventional radiative correction calculations of QED. We find that:(i) all the three renormalisation factors Z1Z_1, Z2Z_2, and Z3Z_3 pick up finite corrections and (ii) the modified propagator breaks the gauge invariance at a very small level of O(10−45){\mathcal{O}}(10^{-45}). The implications of this result to generation of the primordial seed magnetic fields are discussed.Comment: 15 pages, LaTeX2e (uses ijmpd.sty); To appear in IJMP-D; References adde

    Prediction and measurement of radiation damage to CMOS devices on board spacecraft

    Get PDF
    The CMOS Radiation Effects Measurement (CREM) experiment is presently being flown on the Explorer-55. The purpose of the experiment is to evaluate device performance in the actual space radiation environment and to correlate the respective measurements to on-the-ground laboratory irradiation results. The experiment contains an assembly of C-MOS and P-MOS devices shielded in front by flat slabs of aluminum and by a practically infinite shield in the back. Predictions of radiation damage to C-MOS devices are based on standard environment models and computational techniques. A comparison of the shifts in CMOS threshold potentials, that is, those measured in space to those obtained from the on-the-ground simulation experiment with Co-60, indicates that the measured space damage is smaller than predicted by about a factor of 2-3 for thin shields, but agrees well with predictions for thicker shields

    Using the Uncharged Kerr Black Hole as a Gravitational Mirror

    Get PDF
    We extend the study of the possibility to use the Schwarzschild black hole as a gravitational mirror to the more general case of an uncharged Kerr black hole. We use the null geodesic equation in the equatorial plane to prove a theorem concerning the conditions the impact parameter has to satisfy if there shall exist boomerang photons. We derive an equation for these boomerang photons and an equation for the emission angle. Finally, the radial null geodesic equation is integrated numerically in order to illustrate boomerang photons.Comment: 11 pages Latex, 3 Postscript figures, uufiles to compres

    A Note on the Relativistic Covariance of the B−B- Cyclic Relations

    Get PDF
    It is shown that the Evans-Vigier modified electrodynamics is compatible with the Relativity Theory.Comment: ReVTeX file, 14pp., no figure

    Light's Bending Angle due to Black Holes: From the Photon Sphere to Infinity

    Get PDF
    The bending angle of light is a central quantity in the theory of gravitational lensing. We develop an analytical perturbation framework for calculating the bending angle of light rays lensed by a Schwarzschild black hole. Using a perturbation parameter given in terms of the gravitational radius of the black hole and the light ray's impact parameter, we determine an invariant series for the strong-deflection bending angle that extends beyond the standard logarithmic deflection term used in the literature. In the process, we discovered an improvement to the standard logarithmic deflection term. Our perturbation framework is also used to derive as a consistency check, the recently found weak deflection bending angle series. We also reformulate the latter series in terms of a more natural invariant perturbation parameter, one that smoothly transitions between the weak and strong deflection series. We then compare our invariant strong deflection bending-angle series with the numerically integrated exact formal bending angle expression, and find less than 1% discrepancy for light rays as far out as twice the critical impact parameter. The paper concludes by showing that the strong and weak deflection bending angle series together provide an approximation that is within 1% of the exact bending angle value for light rays traversing anywhere between the photon sphere and infinity.Comment: 22 pages, 5 figure

    The equivalence principle, uniformly accelerated reference frames, and the uniform gravitational field

    Get PDF
    The relationship between uniformly accelerated reference frames in flat spacetime and the uniform gravitational field is examined in a relativistic context. It is shown that, contrary to previous statements in the pages of this journal, equivalence does not break down in this context. No restrictions to Newtonian approximations or small enclosures are necessary

    Formal analogies between gravitation and electrodynamics

    Full text link
    We develop a theoretical framework that allows us to compare electromagnetism and gravitation in a fully covariant way. This new scenario does not rely on any kind of approximation nor associate objects with different operational meaning as it's sometime done in the literature. We construct the electromagnetic analogue to the Riemann and Weyl tensors and develop the equations of motion for these objects. In particular, we are able to identify precisely how and in what conditions gravity can be mapped to electrodynamics. As a consequence, many of the gemometrical tools of General Relativity can be applied to Electromagnetism and vice-versa. We hope our results would shed new light in the nature of electromagnetic and gravitational theories.Comment: 9pages, submitted to General Relativity and Gravitatio

    Axial-Vector Torsion and the Teleparallel Kerr Spacetime

    Get PDF
    In the context of the teleparallel equivalent of general relativity, we obtain the tetrad and the torsion fields of the stationary axisymmetric Kerr spacetime. It is shown that, in the slow rotation and weak field approximations, the axial-vector torsion plays the role of the gravitomagnetic component of the gravitational field, and is thus the responsible for the Lense-Thirring effect.Comment: 9 pages, no figures, to appear in Class. Quant. Gra

    The elusive memristor: properties of basic electrical circuits

    Full text link
    We present a tutorial on the properties of the new ideal circuit element, a memristor. By definition, a memristor M relates the charge q and the magnetic flux ϕ\phi in a circuit, and complements a resistor R, a capacitor C, and an inductor L as an ingredient of ideal electrical circuits. The properties of these three elements and their circuits are a part of the standard curricula. The existence of the memristor as the fourth ideal circuit element was predicted in 1971 based on symmetry arguments, but was clearly experimentally demonstrated just this year. We present the properties of a single memristor, memristors in series and parallel, as well as ideal memristor-capacitor (MC), memristor-inductor (ML), and memristor-capacitor-inductor (MCL) circuits. We find that the memristor has hysteretic current-voltage characteristics. We show that the ideal MC (ML) circuit undergoes non-exponential charge (current) decay with two time-scales, and that by switching the polarity of the capacitor, an ideal MCL circuit can be tuned from overdamped to underdamped. We present simple models which show that these unusual properties are closely related to the memristor's internal dynamics. This tutorial complements the pedagogy of ideal circuit elements (R,C, and L) and the properties of their circuits.Comment: 22 pages, 12 figures, substantial text revisio
    • 

    corecore