193 research outputs found

    Modelling of temperature and strain rate dependent behaviour of pearlitic steel in block braked railway wheels

    Get PDF
    Block braked railway wheels are subjected to thermal and rolling contact loading. The thermal loading results in high temperatures and thermal stresses which cause slow time dependent processes such as creep, relaxation and static recovery of the wheel material. At the same time, the rolling contact loading implies a very fast mechanical load application. This paper is focused on material modeling of pearlitic steel for a wide range of loading rates at elevated temperatures. The starting point is a viscoplasticity model including nonlinear isotropic and kinematic hardening. The Delobelle overstress function is employed to capture strain rate dependent response of the material. The model also includes static recovery of the hardening to capture slower viscous (diffusion dominated) behaviour of the material. Experiments for the pearlitic wheel steel ER7 in terms of cyclic strain-controlled uniaxial tests with hold-time, uniaxial ratchetting tests including rapid cycles and biaxial cyclic tests with tension/compression and torsion are used to calibrate the material model. These experiments were performed under isothermal conditions at different temperatures. In the ratchetting tests, higher loading rates are obtained and these have been used to calibrate the high strain rate response of the viscoplasticity model. The paper is concluded with a numerical example of a block braked wheel where the importance of accounting for the viscoplasticity in modelling is highlighted

    The Muon Anomalous Magnetic Moment and the Standard Model

    Full text link
    The muon anomalous magnetic moment measurement, when compared with theory, can be used to test many extensions to the standard model. The most recent measurement made by the Brookhaven E821 Collaboration reduces the uncertainty on the world average of a_mu to 0.7 ppm, comparable in precision to theory. This paper describes the experiment and the current theoretical efforts to establish a correct standard model reference value for the muon anomaly.Comment: Plenary Talk; PANIC'02 XVI Particles and Nuclear International Conference, Osaka, Japan; Sept. 30 - Oct. 4, 2002; Report describes the published 0.7 ppm result and updates the theory statu

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL

    Full text link
    We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a_mu = (g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positive and negative muons, were used to deduce a_mu(Expt) = 11 659 208.0(5.4)(3.3) x 10^-10, where the statistical and systematic uncertainties are given, respectively. The combined uncertainty of 0.54 ppm represents a 14-fold improvement compared to previous measurements at CERN. The standard model value for a_mu includes contributions from virtual QED, weak, and hadronic processes. While the QED processes account for most of the anomaly, the largest theoretical uncertainty, ~0.55 ppm, is associated with first-order hadronic vacuum polarization. Present standard model evaluations, based on e+e- hadronic cross sections, lie 2.2 - 2.7 standard deviations below the experimental result.Comment: Summary paper of E821 Collaboration measurements of the muon anomalous magnetic moment, each reported earlier in Letters or Brief Reports; 96 pages, 41 figures, 16 tables. Revised version submitted to PR

    Search for Lorentz and CPT Violation Effects in Muon Spin Precession

    Full text link
    The spin precession frequency of muons stored in the (g−2)(g-2) storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero Δωa\Delta\omega_{a} (=ωaμ+−ωaμ−\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}); and a sidereal variation of ωaμ±\omega_{a}^{\mu^{\pm}}. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: bZ=−(1.0±1.1)×10−23b_{Z} =-(1.0 \pm 1.1)\times 10^{-23} GeV; (mμdZ0+HXY)=(1.8±6.0×10−23)(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23}) GeV; and the 95% confidence level limits bˇ⊥μ+<1.4×10−24\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24} GeV and bˇ⊥μ−<2.6×10−24\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24} GeV.Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestion

    An Improved Limit on the Muon Electric Dipole Moment

    Get PDF
    Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muon, as well as the combined result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM.Comment: 19 pages, 15 figures, 7 table
    • …
    corecore