16,641 research outputs found

    Spatial Resolution with Time-and-Polarization-Resolved Acoustic Microscopy

    Get PDF
    Spatial resolution is an important factor in ultrasonic materials characterization. Scanning acoustic microscopy [1–2] has proved to be a useful tool for materials evaluation with micrometer-scale spatial resolution. Point-focus-beam (PFB) acoustic microscopy has high spatial resolution and is often used to produce images as well as to probe material inhomogeneity. However, a disadvantage of the PFB technique lies in its insensitivity to material anisotropy. In contrast, line-focus-beam (LFB) acoustic microscopy can provide a directional ultrasonic velocity measurement and is employed for characterization of anisotropic materials [3–5]. But the LFB technique, with its unidirectional spatial resolution, is generally incapable of producing images, and is therefore disadvantageous for probing inhomogeneous materials. In response to this need, a variety of lens designs [6–9] in acoustic microscopy have been proposed for measuring materials, which are both inhomogeneous and anisotropic

    Measurement of Elastic Moduli in Ceramic Composites as a Function fo Porosity Content

    Get PDF
    Longitudinal and transverse ultrasonic velocity measurements were made to obtain elastic moduli of ceramic compacts and continuous fiber ceramic composites (CMCC) as a function of porosity volume fraction. The ceramic compacts were hot pressed silicon carbide and the CMCC were Nicalon fiber reinforced silicon carbide, manufactured using a forced chemical vapor infiltration (FCVI) process developed at Oak Ridge National Laboratory [1]. The purpose of the SiC powder compact study was to obtain experimental results of elastic moduli for various porosity level and to compare the measured results with predictions based on theoretical models. For chemical vapor infiltrated Nicalon/SiC ceramic composites, elastic constants data at different porosity level were not readily available in the literature. The purpose of the study was therefore to generate a more complete set of modulus data as a function of void content. These results can be used for the optimization of the manufacturing process and for comparison with mechanical testing results

    Vortex mediated microwave absorption in superclean layered superconductors

    Full text link
    In the superclean case the spectrum of vortex core excitations in the presence of disorder is not random but consists of two series of equally-spaced levels. The I-V characteristics of such superconductors displays many interesting phenomena. A series of resonances is predicted at frequencies commensurate with the spacing of the vortex excitations. These resonances reveal an even-odd anomaly. In the presence of one weak impurity the excitation levels can approach each other and almost cross. Absorption at very low frequencies is identified with the resonances arising in this case. The results of such microscopic theory coincide up to the order of magnitude with both the theory employing kinetic equation and the experiment. The non-linear effects associated with Zener transitions in such crossings are studied. These phenomena can be used as a probe of vortex core excitations.Comment: 11 pages, 2 Postscript figure

    Electron-ion interaction in doped conducting polymers

    Get PDF
    The discovery of electric-field effect for conducting polymers in transistor structures aroused a number of questions about structure, mechanism of charge transport, and a role of ions in conducting polymers. We present here the model of an electrochemical transistor whose resistance is governed by the gate potential through bulk ionic charging/discharging of the conducting polymer-based active channel. The predicted I(V) characteristics do not agree with the measured experimental dependencies for highly doped conducting polymer-based transistors. We suggest that the observable electric-field effect in conducting polymers is related to their structural peculiarities. The large free volume within the conductive polymer chain network enables ions to easily move into and out of the polymers. The main effect of ion insertion is breaking of the percolation network for the conductivity by removing critical hoping sites and, as a result, producing a conductor-nonconductor transition

    Optimum Small Optical Beam Displacement Measurement

    Full text link
    We derive the quantum noise limit for the optical beam displacement of a TEM00 mode. Using a multimodal analysis, we show that the conventional split detection scheme for measuring beam displacement is non-optimal with 80% efficiency. We propose a new displacement measurement scheme that is optimal for small beam displacement. This scheme utilises a homodyne detection setup that has a TEM10 mode local oscillator. We show that although the quantum noise limit to displacement measurement can be surpassed using squeezed light in appropriate spatial modes for both schemes, the TEM10 homodyning scheme out-performs split detection for all values of squeezing.Comment: 13 pages, 7 figure

    Scaling theory of two-dimensional metal-insulator transitions

    Full text link
    We discuss the recently discovered two-dimensional metal-insulator transition in zero magnetic field in the light of the scaling theory of localization. We demonstrate that the observed symmetry relating conductivity and resistivity follows directly from the quantum critical behavior associated with such a transition. In addition, we show that very general scaling considerations imply that any disordered two dimensional metal is a perfect metal, but most likely not a Fermi liquid.Comment: 4 pages, no figures, REVTEX. Minor corrections adde

    Volume Stabilization via α′\alpha^\prime Corrections in Type IIB Theory with Fluxes

    Full text link
    We consider the Type IIB string theory in the presence of various extra 7/7ˉ7/\bar 7-brane pairs compactified on a warped Calabi-Yau threefold that admits a conifold singularity. We demonstrate that the volume modulus can be stabilized perturbatively at a non-supersymmetric AdS4/dS4AdS_4/dS_4 vacuum by the effective potential that includes the stringy (α′)3(\alpha^\prime)^3 correction obtained by Becker {\it et al.} together with a combination of positive tension and anomalous negative tension terms generated by the additional 7-brane-antibrane pairs.Comment: 20 pages, 4 figures, parts of introduction and conclusions are modifie

    A review of Monte Carlo simulations of polymers with PERM

    Full text link
    In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the Θ\Theta point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011

    Spatial state Stokes-operator squeezing and entanglement for optical beams

    Full text link
    The transverse spatial attributes of an optical beam can be decomposed into the position, momentum and orbital angular momentum observables. The position and momentum of a beam is directly related to the quadrature amplitudes, whilst the orbital angular momentum is related to the polarization and spin variables. In this paper, we study the quantum properties of these spatial variables, using a representation in the Stokes-operator basis. We propose a spatial detection scheme to measure all three spatial variables and consequently, propose a scheme for the generation of spatial Stokes operator squeezing and entanglement.Comment: submitte
    • …
    corecore