48 research outputs found

    A synthesis of the ecological processes influencing variation in life history and movement patterns of American eel: towards a global assessment

    Full text link

    A cell-autonomous role for WT1 in regulating Sry in vivo

    No full text
    Human patients with Frasier syndrome express reduced levels of the +KTS isoforms of the developmental regulator WT1 and exhibit complete XY gonadal dysgenesis and male-to-female sex reversal. Mice with a targeted mutation that blocks production of these isoforms show a reduction in Sry mRNA in the gonad, but the molecular and cellular basis of this reduction has not been established. Using immunofluorescence analysis, we found a significantly lower level of SRY protein per cell in XY Wt1(+KTS)-null mouse gonads. We also found a reduced number of SRY-expressing cells, correlating with a decrease in cell proliferation at and near the coelomic epithelium at 11.5 dpc. No reduction in somatic cell numbers was seen in XX Wt1(+KTS)-null gonads, indicating that the effect of WT1 on cell proliferation is mediated by Sry. Sertoli cell differentiation was blocked in XY Wt1(+KTS)-null mouse gonads, as indicated by the loss of SOX9 and Fgf9 expression, but the addition of recombinant FGF9 to ex vivo gonad cultures rescued the mutant phenotype, as indicated by the induction of the Sertoli-cell specific marker anti-Müllerian hormone. Our data suggest that WT1(+KTS) is involved in the cell-autonomous regulation of Sry expression, which in turn influences cell proliferation and Sertoli cell differentiation via FGF9. Thus, sex reversal in Wt1(+KTS)-null mice and Frasier syndrome patients results from a failure of Sertoli cells both to fully differentiate and to reach sufficient numbers to direct testis development

    First evidence of deuterotokous parthenogenesis in the tomato leafminer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

    Full text link
    The tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae), originates from South America and is now considered to be one of the most damaging invasive pests of tomatoes in the Mediterranean Basin countries of Europe and North Africa. The preventing pest mating control methods include: (1) the use of synthetic pheromones for male attraction and annihilation inside insecticide-containing traps; (2) mating disruption by saturating the atmosphere with sex pheromones which alter the ability of males to locate females; and (3) massive applications of sterile males to alter the overall reproductive success of the pest population. However, all these methods achieve only a poor success rate in controlling T. absoluta populations under greenhouse conditions. Sex pheromone management and sterile insect techniques are both based on an important biological trait: the insect must breed through sexual reproduction. Here, we report for the first time laboratory evidence of deuterotokous parthenogenesis, an asexual reproduction where both males and females are produced from unfertilized eggs. We discuss the consequences for T. absoluta control strategies.Mise en place de nouvelles stratégies de lutte biologique contre la mineuse de la tomate (Tuta absoluta), ravageur émergeant des Solanacées
    corecore