180 research outputs found

    Suppression of Quantum Scattering in Strongly Confined Systems

    Get PDF
    We demonstrate that scattering of particles strongly interacting in three dimensions (3D) can be suppressed at low energies in a quasi-one-dimensional (1D) confinement. The underlying mechanism is the interference of the s- and p-wave scattering contributions with large s- and p-wave 3D scattering lengths being a necessary prerequisite. This low-dimensional quantum scattering effect might be useful in "interacting" quasi-1D ultracold atomic gases, guided atom interferometry, and impurity scattering in strongly confined quantum wire-based electronic devices.Comment: 3 figs, Phys. Rev. Lett. (early November issue

    Resonant d-wave scattering in harmonic waveguides

    Full text link
    We observe and analyze d-wave resonant scattering of bosons in tightly confining harmonic waveguides. It is shown that the d-wave resonance emerges in the quasi-1D regime as an imprint of a 3D d-wave shape resonance. A scaling relation for the position of the d-wave resonance is provided. By changing the trap frequency, ultracold scattering can be continuously tuned from s-wave to d-wave resonant behavior. The effect can be utilized for the realization of ultracold atomic gases interacting via higher partial waves and opens a novel possibility for studying strongly correlated atomic systems beyond s-wave physics.Comment: 6 pages, 9 figure

    Unusual, basin-scale, fluid–rock interaction in the Palaeoproterozoic Onega basin from Fennoscandia : Preservation in calcite δ18O of an ancient high geothermal gradient

    Get PDF
    Acknowledgements We acknowledge financial support from ICDP for the drilling programme. AEF, ATB and ARP thank NERC for financial support through NE/G00398X/1. VAM thanks the Norwegian Research Council for financial support through 191530/V30. We are grateful for sample preparation and analyses to all the personnel at NGU lab. At SUERC we enjoyed exceptional analytical support from Julie Dougans. Anonymous reviewers and the editor provided comments that improved the final manuscript.Peer reviewedPostprin

    Differential cross sections for muonic atom scattering from hydrogenic molecules

    Get PDF
    The differential cross sections for low-energy muonic hydrogen atom scattering from hydrogenic molecules are directly expressed by the corresponding amplitudes for muonic atom scattering from hydrogen-isotope nuclei. The energy and angular dependence of these three-body amplitudes is thus taken naturally into account in scattering from molecules, without involving any pseudopotentials. Effects of the internal motion of nuclei inside the target molecules are included for every initial rotational-vibrational state. These effects are very significant as the considered three-body amplitudes often vary strongly within the energy interval 0.1\lesssim{}0.1 eV. The differential cross sections, calculated using the presented method, have been successfully used for planning and interpreting many experiments in low-energy muon physics. Studies of μ\mu^{-} nuclear capture in pμp\mu and the measurement of the Lamb shift in pμp\mu atoms created in H2_2 gaseous targets are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.

    Petrography and geochemistry of carbonate rocks of the Paleoproterozoic Zaonega Formation, Russia : Documentation of C-13-depleted non-primary calcite

    Get PDF
    The Norwegian Research Council grant 191530/V30 to V.A. Melezhik fully funded the work of AEC, VAM and AL. ATB was supported by NERC grant NE/G00398X/1 to AEF and ARP. We are grateful for sample preparation and analyses to all the personnel at NGU lab. We appreciate the work on carbon and oxygen isotope analyses by Julie Dougans and Chris Taylor. Bojan Otoničar organized and helped with the CL work at the Karst Research Institute at Postojna. Arrangement of TOC, IC, and TC analyses at University of Münster is acknowledged to Harald Strauss.Peer reviewedPostprin
    corecore